BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 19767461)

  • 1. Development of a log-quadratic model to describe microbial inactivation, illustrated by thermal inactivation of Clostridium botulinum.
    Stone G; Chapman B; Lovell D
    Appl Environ Microbiol; 2009 Nov; 75(22):6998-7005. PubMed ID: 19767461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Risk assessment of proteolytic Clostridium botulinum in canned foie gras.
    Membré JM; Diao M; Thorin C; Cordier G; Zuber F; André S
    Int J Food Microbiol; 2015 Oct; 210():62-72. PubMed ID: 26093992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C. botulinum inactivation kinetics implemented in a computational model of a high-pressure sterilization process.
    Juliano P; Knoerzer K; Fryer PJ; Versteeg C
    Biotechnol Prog; 2009; 25(1):163-75. PubMed ID: 19197999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation of non-proteolytic Clostridium botulinum type E in low-acid foods and phosphate buffer by heat and pressure.
    Maier MB; Schweiger T; Lenz CA; Vogel RF
    PLoS One; 2018; 13(7):e0200102. PubMed ID: 29969482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined high pressure and thermal processing on inactivation of type A and proteolytic type B spores of Clostridium botulinum.
    Reddy NR; Marshall KM; Morrissey TR; Loeza V; Patazca E; Skinner GE; Krishnamurthy K; Larkin JW
    J Food Prot; 2013 Aug; 76(8):1384-92. PubMed ID: 23905794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The application of a log-logistic model to describe the thermal inactivation of Clostridium botulinum 213B at temperatures below 121.1 degrees C.
    Anderson WA; McClure PJ; Baird-Parker AC; Cole MB
    J Appl Bacteriol; 1996 Mar; 80(3):283-90. PubMed ID: 8852676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressure-assisted thermal processing.
    Ahn J; Balasubramaniam VM; Yousef AE
    Int J Food Microbiol; 2007 Feb; 113(3):321-9. PubMed ID: 17196696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meta-analysis of D-values of proteolytic Clostridium botulinum and its surrogate strain Clostridium sporogenes PA 3679.
    Diao MM; André S; Membré JM
    Int J Food Microbiol; 2014 Mar; 174():23-30. PubMed ID: 24448274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating the survival of Clostridium botulinum spores during heat treatments.
    Peleg M; Cole MB
    J Food Prot; 2000 Feb; 63(2):190-5. PubMed ID: 10678423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of High Pressures in Combination with Temperature on the Inactivation of Spores of Nonproteolytic Clostridium botulinum Types B and F.
    Skinner GE; Morrissey TR; Patazca E; Loeza V; Halik LA; Schill KM; Reddy NR
    J Food Prot; 2018 Feb; 81(2):261-271. PubMed ID: 29360398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of thermal treatments in oils on bacterial spore survival.
    Ababouch L; Busta FF
    J Appl Bacteriol; 1987 Jun; 62(6):491-502. PubMed ID: 3114210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of Group I and Group II Clostridium botulinum spores by ultraviolet irradiation in water.
    Assal N; Boone R; Harris RA; Gabriel M; Sasges M; Petri B; Ramaswamy H; Austin JW
    Int J Food Microbiol; 2023 Jun; 395():110191. PubMed ID: 37019040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-linear pressure/temperature-dependence of high pressure thermal inactivation of proteolytic Clostridium botulinum type B in foods.
    Maier MB; Lenz CA; Vogel RF
    PLoS One; 2017; 12(10):e0187023. PubMed ID: 29073204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic inactivation of spores of proteolytic Clostridium botulinum strains by high pressure and heat is strain and product dependent.
    Bull MK; Olivier SA; van Diepenbeek RJ; Kormelink F; Chapman B
    Appl Environ Microbiol; 2009 Jan; 75(2):434-45. PubMed ID: 19011055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic Assessment of Nonproteolytic Clostridium botulinum Spores for Heat Resistance.
    Wachnicka E; Stringer SC; Barker GC; Peck MW
    Appl Environ Microbiol; 2016 Oct; 82(19):6019-29. PubMed ID: 27474721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined high pressure and thermal processing on inactivation of type E and nonproteolytic type B and F spores of Clostridium botulinum.
    Skinner GE; Marshall KM; Morrissey TR; Loeza V; Patazca E; Reddy NR; Larkin JW
    J Food Prot; 2014 Dec; 77(12):2054-61. PubMed ID: 25474050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model for the thermal inactivation of micro-organisms.
    Lambert RJ
    J Appl Microbiol; 2003; 95(3):500-7. PubMed ID: 12911698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal inactivation of Escherichia coli O157:H7 when grown statically or continuously in a chemostat.
    Black DG; Ye XP; Harte F; Davidson PM
    J Food Prot; 2010 Nov; 73(11):2018-24. PubMed ID: 21219713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation Kinetics of Pathogens during Thermal Processing in Acidified Broth and Tomato Purée (pH 4.5).
    Dufort EL; Sogin J; Etzel MR; Ingham BH
    J Food Prot; 2017 Dec; 80(12):2014-2021. PubMed ID: 29140746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature.
    Margosch D; Ehrmann MA; Buckow R; Heinz V; Vogel RF; Gänzle MG
    Appl Environ Microbiol; 2006 May; 72(5):3476-81. PubMed ID: 16672493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.