BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 19767475)

  • 41. Occurrence of and Sequence Variation among F-Specific RNA Bacteriophage Subgroups in Feces and Wastewater of Urban and Animal Origins.
    Hartard C; Rivet R; Banas S; Gantzer C
    Appl Environ Microbiol; 2015 Sep; 81(18):6505-15. PubMed ID: 26162878
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sunlight inactivation of fecal indicator bacteria and bacteriophages from waste stabilization pond effluent in fresh and saline waters.
    Sinton LW; Hall CH; Lynch PA; Davies-Colley RJ
    Appl Environ Microbiol; 2002 Mar; 68(3):1122-31. PubMed ID: 11872459
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improved detection of F-specific RNA coliphages in fecal material by extraction and polyethylene glycol precipitation.
    Jones TH; Johns MW
    Appl Environ Microbiol; 2009 Oct; 75(19):6142-6. PubMed ID: 19648380
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The application of bacteriophages as novel indicators of viral pathogens in wastewater treatment systems.
    Dias E; Ebdon J; Taylor H
    Water Res; 2018 Feb; 129():172-179. PubMed ID: 29149672
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Distribution of ribonucleic acid coliphages in raw sewage from treatment plants in Japan.
    Furuse K; Ando A; Osawa S; Watanabe I
    Appl Environ Microbiol; 1981 May; 41(5):1139-43. PubMed ID: 7259154
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Correlation between bacterial indicators and bacteriophages in sewage and sludge.
    Mandilara GD; Smeti EM; Mavridou AT; Lambiri MP; Vatopoulos AC; Rigas FP
    FEMS Microbiol Lett; 2006 Oct; 263(1):119-26. PubMed ID: 16958859
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis of indicator strains and density of ribonucleic acid-containing coliphages in sewage.
    Dhillon EK; Dhillon TS
    Appl Microbiol; 1974 Apr; 27(4):640-7. PubMed ID: 4596747
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Integrated analysis of established and novel microbial and chemical methods for microbial source tracking.
    Blanch AR; Belanche-Muñoz L; Bonjoch X; Ebdon J; Gantzer C; Lucena F; Ottoson J; Kourtis C; Iversen A; Kühn I; Mocé L; Muniesa M; Schwartzbrod J; Skraber S; Papageorgiou GT; Taylor H; Wallis J; Jofre J
    Appl Environ Microbiol; 2006 Sep; 72(9):5915-26. PubMed ID: 16957211
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Isolation of bacteriophage host strains of Bacteroides species suitable for tracking sources of animal faecal pollution in water.
    Gómez-Doñate M; Payán A; Cortés I; Blanch AR; Lucena F; Jofre J; Muniesa M
    Environ Microbiol; 2011 Jun; 13(6):1622-31. PubMed ID: 21443742
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Application of F⁺RNA Coliphages as Source Tracking Enteric Viruses on Parsley and Leek Using RT-PCR.
    Shahrampour D; Yavarmanesh M; Najafi MB; Mohebbi M
    Food Environ Virol; 2015 Dec; 7(4):381-9. PubMed ID: 26264153
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Applicability Evaluation of Male-Specific Coliphage-Based Detection Methods for Microbial Contamination Tracking.
    Kim G; Park G; Kang S; Lee S; Park J; Ha J; Park K; Kang M; Cho M; Shin H
    J Microbiol Biotechnol; 2021 Dec; 31(12):1709-1715. PubMed ID: 34675140
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bacteriophages as indicators of human and animal faecal contamination in raw and treated wastewaters from Tunisia.
    Yahya M; Hmaied F; Jebri S; Jofre J; Hamdi M
    J Appl Microbiol; 2015 May; 118(5):1217-25. PubMed ID: 25689071
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development and evaluation of a culture-independent method for source determination of fecal wastes in surface and storm waters using reverse transcriptase-PCR detection of FRNA coliphage genogroup gene sequences.
    Paar J; Doolittle MM; Varma M; Siefring S; Oshima K; Haugland RA
    J Microbiol Methods; 2015 May; 112():28-35. PubMed ID: 25744574
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of an anion exchange resin-based method for concentration of F-RNA coliphages (enteric virus indicators) from water samples.
    Pérez-Méndez A; Chandler JC; Bisha B; Goodridge LD
    J Virol Methods; 2014 Aug; 204():109-15. PubMed ID: 24747586
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bacteriophages and indicator bacteria in human and animal faeces.
    Havelaar AH; Furuse K; Hogeboom WM
    J Appl Bacteriol; 1986 Mar; 60(3):255-62. PubMed ID: 3710943
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Detection of coliphages and human adenoviruses in a subtropical estuarine lake.
    Cooksey EM; Singh G; Scott LC; Aw TG
    Sci Total Environ; 2019 Feb; 649():1514-1521. PubMed ID: 30308919
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Occurrence of viruses and protozoa in drinking water sources of Japan and their relationship to indicator microorganisms.
    Haramoto E; Kitajima M; Kishida N; Katayama H; Asami M; Akiba M
    Food Environ Virol; 2012 Sep; 4(3):93-101. PubMed ID: 23412836
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of microbial source tracking methods using mixed fecal sources in aqueous test samples.
    Griffith JF; Weisberg SB; McGee CD
    J Water Health; 2003 Dec; 1(4):141-51. PubMed ID: 15382720
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Detection of infectious enteroviruses, enterovirus genomes, somatic coliphages, and Bacteroides fragilis phages in treated wastewater.
    Gantzer C; Maul A; Audic JM; Schwartzbrod L
    Appl Environ Microbiol; 1998 Nov; 64(11):4307-12. PubMed ID: 9797281
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A comparison of the survival of F+RNA and F+DNA coliphages in lake water microcosms.
    Long SC; Sobsey MD
    J Water Health; 2004 Mar; 2(1):15-22. PubMed ID: 15384726
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.