BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 19767579)

  • 1. Mmp-20 and Klk4 cleavage site preferences for amelogenin sequences.
    Nagano T; Kakegawa A; Yamakoshi Y; Tsuchiya S; Hu JC; Gomi K; Arai T; Bartlett JD; Simmer JP
    J Dent Res; 2009 Sep; 88(9):823-8. PubMed ID: 19767579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How do enamelysin and kallikrein 4 process the 32-kDa enamelin?
    Yamakoshi Y; Hu JC; Fukae M; Yamakoshi F; Simmer JP
    Eur J Oral Sci; 2006 May; 114 Suppl 1():45-51; discussion 93-5, 379-80. PubMed ID: 16674662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cleavage site specificity of MMP-20 for secretory-stage ameloblastin.
    Chun YH; Yamakoshi Y; Yamakoshi F; Fukae M; Hu JC; Bartlett JD; Simmer JP
    J Dent Res; 2010 Aug; 89(8):785-90. PubMed ID: 20400724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of enamelysin (MMP-20) selectivity to three peptide bonds on amelogenin sequence.
    Wang L; Moradian-Oldak J
    J Dent Res; 2002 Oct; 81(10):664-7. PubMed ID: 12351662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functions of KLK4 and MMP-20 in dental enamel formation.
    Lu Y; Papagerakis P; Yamakoshi Y; Hu JC; Bartlett JD; Simmer JP
    Biol Chem; 2008 Jun; 389(6):695-700. PubMed ID: 18627287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enamel proteins and proteases in Mmp20 and Klk4 null and double-null mice.
    Yamakoshi Y; Richardson AS; Nunez SM; Yamakoshi F; Milkovich RN; Hu JC; Bartlett JD; Simmer JP
    Eur J Oral Sci; 2011 Dec; 119 Suppl 1(Suppl 1):206-16. PubMed ID: 22243248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apatite reduces amelogenin proteolysis by MMP-20 and KLK4 in vitro.
    Sun Z; Carpiaux W; Fan D; Fan Y; Lakshminarayanan R; Moradian-Oldak J
    J Dent Res; 2010 Apr; 89(4):344-8. PubMed ID: 20160068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porcine kallikrein-4 activation, glycosylation, activity, and expression in prokaryotic and eukaryotic hosts.
    Ryu O; Hu JC; Yamakoshi Y; Villemain JL; Cao X; Zhang C; Bartlett JD; Simmer JP
    Eur J Oral Sci; 2002 Oct; 110(5):358-65. PubMed ID: 12664466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enamel proteases reduce amelogenin-apatite binding.
    Sun Z; Fan D; Fan Y; Du C; Moradian-Oldak J
    J Dent Res; 2008 Dec; 87(12):1133-7. PubMed ID: 19029081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluoride incorporation into apatite crystals delays amelogenin hydrolysis.
    DenBesten PK; Zhu L; Li W; Tanimoto K; Liu H; Witkowska HE
    Eur J Oral Sci; 2011 Dec; 119 Suppl 1(Suppl 1):3-7. PubMed ID: 22243219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leucine rich amelogenin peptide alters ameloblast differentiation in vivo.
    Stahl J; Nakano Y; Kim SO; Gibson CW; Le T; DenBesten P
    Matrix Biol; 2013; 32(7-8):432-42. PubMed ID: 23747796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-linked amelogenesis imperfecta may result from decreased formation of tyrosine rich amelogenin peptide (TRAP).
    Li W; Gao C; Yan Y; DenBesten P
    Arch Oral Biol; 2003 Mar; 48(3):177-83. PubMed ID: 12648554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing of ameloblastin by MMP-20.
    Iwata T; Yamakoshi Y; Hu JC; Ishikawa I; Bartlett JD; Krebsbach PH; Simmer JP
    J Dent Res; 2007 Feb; 86(2):153-7. PubMed ID: 17251515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MMP20 and KLK4 activation and inactivation interactions in vitro.
    Yamakoshi Y; Simmer JP; Bartlett JD; Karakida T; Oida S
    Arch Oral Biol; 2013 Nov; 58(11):1569-77. PubMed ID: 24112721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amelogenin post-secretory processing during biomineralization in the postnatal mouse molar tooth.
    Fincham AG; Hu Y; Lau EC; Slavkin HC; Snead ML
    Arch Oral Biol; 1991; 36(4):305-17. PubMed ID: 2064551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative HPLC, SDS-PAGE, and immunoblot analyses of dental enamel proteins.
    Ryu OH; Hu CC; Simmer JP
    Adv Dent Res; 1996 Nov; 10(2):150-8. PubMed ID: 9206331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical characterization of stable high molecular-weight aggregates of amelogenins formed during porcine enamel development.
    Limeback H; Simic A
    Arch Oral Biol; 1990; 35(6):459-68. PubMed ID: 2372249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of recombinant pig enamelysin activity and cleavage of recombinant pig and mouse amelogenins.
    Ryu OH; Fincham AG; Hu CC; Zhang C; Qian Q; Bartlett JD; Simmer JP
    J Dent Res; 1999 Mar; 78(3):743-50. PubMed ID: 10096449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional roles of prolines at amelogenin C terminal during tooth enamel formation.
    Zhu L; Tanimoto K; Le T; DenBesten PK; Li W
    Cells Tissues Organs; 2009; 189(1-4):203-6. PubMed ID: 18701806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porcine Amelogenin : Alternative Splicing, Proteolytic Processing, Protein - Protein Interactions, and Possible Functions.
    Yamakoshi Y
    J Oral Biosci; 2011; 53(3):275-283. PubMed ID: 22200995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.