These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19767654)

  • 1. Targeting of the prion protein to the cytosol: mechanisms and consequences.
    Miesbauer M; Rambold AS; Winklhofer KF; Tatzelt J
    Curr Issues Mol Biol; 2010; 12(2):109-18. PubMed ID: 19767654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective processing and metabolism of disease-causing mutant prion proteins.
    Ashok A; Hegde RS
    PLoS Pathog; 2009 Jun; 5(6):e1000479. PubMed ID: 19543376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytoskeleton-dependent clustering of membrane-bound prion protein on the cell surface.
    Hackl S; Ng XW; Lu D; Wohland T; Becker CFW
    J Biol Chem; 2021; 296():100359. PubMed ID: 33539927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of GPI-anchored PrP C in mediating the neurotoxic effect of scrapie prions in neurons.
    Radford HE; Mallucci GR
    Curr Issues Mol Biol; 2010; 12(2):119-27. PubMed ID: 19767655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prion protein-related proteins from zebrafish are complex glycosylated and contain a glycosylphosphatidylinositol anchor.
    Miesbauer M; Bamme T; Riemer C; Oidtmann B; Winklhofer KF; Baier M; Tatzelt J
    Biochem Biophys Res Commun; 2006 Mar; 341(1):218-24. PubMed ID: 16414019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of cryptic nuclear localization signals in the prion protein.
    Gu Y; Hinnerwisch J; Fredricks R; Kalepu S; Mishra RS; Singh N
    Neurobiol Dis; 2003 Mar; 12(2):133-49. PubMed ID: 12667468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycosylphosphatidylinositol anchor-dependent stimulation pathway required for generation of baculovirus-derived recombinant scrapie prion protein.
    Imamura M; Kato N; Yoshioka M; Okada H; Iwamaru Y; Shimizu Y; Mohri S; Yokoyama T; Murayama Y
    J Virol; 2011 Mar; 85(6):2582-8. PubMed ID: 21228241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-translational import of the prion protein into the endoplasmic reticulum interferes with cell viability: a critical role for the putative transmembrane domain.
    Heller U; Winklhofer KF; Heske J; Reintjes A; Tatzelt J
    J Biol Chem; 2003 Sep; 278(38):36139-47. PubMed ID: 12853456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dimerization of the cellular prion protein inhibits propagation of scrapie prions.
    Engelke AD; Gonsberg A; Thapa S; Jung S; Ulbrich S; Seidel R; Basu S; Multhaup G; Baier M; Engelhard M; Schätzl HM; Winklhofer KF; Tatzelt J
    J Biol Chem; 2018 May; 293(21):8020-8031. PubMed ID: 29636413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anchorless prion protein results in infectious amyloid disease without clinical scrapie.
    Chesebro B; Trifilo M; Race R; Meade-White K; Teng C; LaCasse R; Raymond L; Favara C; Baron G; Priola S; Caughey B; Masliah E; Oldstone M
    Science; 2005 Jun; 308(5727):1435-9. PubMed ID: 15933194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathogenic mutations within the hydrophobic domain of the prion protein lead to the formation of protease-sensitive prion species with increased lethality.
    Coleman BM; Harrison CF; Guo B; Masters CL; Barnham KJ; Lawson VA; Hill AF
    J Virol; 2014 Mar; 88(5):2690-703. PubMed ID: 24352465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impaired transport of intrinsically disordered proteins through the Sec61 and SecY translocon; implications for prion diseases.
    Jung S; Tatzelt J
    Prion; 2018 Mar; 12(2):88-92. PubMed ID: 29388511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteasomal dysfunction and endoplasmic reticulum stress enhance trafficking of prion protein aggregates through the secretory pathway and increase accumulation of pathologic prion protein.
    Nunziante M; Ackermann K; Dietrich K; Wolf H; Gädtke L; Gilch S; Vorberg I; Groschup M; Schätzl HM
    J Biol Chem; 2011 Sep; 286(39):33942-53. PubMed ID: 21835918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prion protein and metal interaction: physiological and pathological implications.
    Singh N; Das D; Singh A; Mohan ML
    Curr Issues Mol Biol; 2010; 12(2):99-107. PubMed ID: 19767653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol.
    Ma J; Wollmann R; Lindquist S
    Science; 2002 Nov; 298(5599):1781-5. PubMed ID: 12386337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggresome formation by mutant prion proteins: the unfolding role of proteasomes in familial prion disorders.
    Mishra RS; Bose S; Gu Y; Li R; Singh N
    J Alzheimers Dis; 2003 Feb; 5(1):15-23. PubMed ID: 12590162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytosolic prion protein (PrP) is not toxic in N2a cells and primary neurons expressing pathogenic PrP mutations.
    Fioriti L; Dossena S; Stewart LR; Stewart RS; Harris DA; Forloni G; Chiesa R
    J Biol Chem; 2005 Mar; 280(12):11320-8. PubMed ID: 15632159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prion neurotoxicity: insights from prion protein mutants.
    Solomon IH; Schepker JA; Harris DA
    Curr Issues Mol Biol; 2010; 12(2):51-61. PubMed ID: 19767650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-seeding by prion protein inactivates TDP-43.
    Polido SA; Stuani C; Voigt A; Banik P; Kamps J; Bader V; Grover P; Krause LJ; Zerr I; Matschke J; Glatzel M; Winklhofer KF; Buratti E; Tatzelt J
    Brain; 2024 Jan; 147(1):240-254. PubMed ID: 37669322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retrotranslocation of prion proteins from the endoplasmic reticulum by preventing GPI signal transamidation.
    Ashok A; Hegde RS
    Mol Biol Cell; 2008 Aug; 19(8):3463-76. PubMed ID: 18508914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.