These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 19767919)

  • 1. Enhanced sensitivity for the detection of trace gases using multiple line integrated absorption spectroscopy.
    Karpf A; Rao GN
    Appl Opt; 2009 Sep; 48(27):5061-6. PubMed ID: 19767919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of trace gas detection by integrating wavelength modulated spectra across multiple lines.
    Karpf A; Rao GN
    Appl Opt; 2010 Mar; 49(8):1406-13. PubMed ID: 20220898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extremely sensitive detection of NO₂ employing off-axis integrated cavity output spectroscopy coupled with multiple-line integrated absorption spectroscopy.
    Rao GN; Karpf A
    Appl Opt; 2011 May; 50(13):1915-24. PubMed ID: 21532674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High sensitivity detection of NO2 employing cavity ringdown spectroscopy and an external cavity continuously tunable quantum cascade laser.
    Rao GN; Karpf A
    Appl Opt; 2010 Sep; 49(26):4906-14. PubMed ID: 20830179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum cascade laser technology for the ultrasensitive detection of low-level nitric oxide.
    Elia A; Lugarà PM; Di Franco C; Spagnolo V
    Methods Mol Biol; 2011; 704():115-33. PubMed ID: 21161634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Cavity Enhanced Absorption Spectroscopy to the Detection of Nitric Oxide, Carbonyl Sulphide, and Ethane--Breath Biomarkers of Serious Diseases.
    Wojtas J
    Sensors (Basel); 2015 Jun; 15(6):14356-69. PubMed ID: 26091398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor.
    Dong L; Spagnolo V; Lewicki R; Tittel FK
    Opt Express; 2011 Nov; 19(24):24037-45. PubMed ID: 22109428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser diagnostics of welding plasma by polarization spectroscopy.
    Lucas O; Alwahabi ZT; Linton V; Meeuwissen K
    Appl Spectrosc; 2007 May; 61(5):565-9. PubMed ID: 17555627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity enhancement in off-axis integrated cavity output spectroscopy.
    Centeno R; Mandon J; Cristescu SM; Harren FJ
    Opt Express; 2014 Nov; 22(23):27985-91. PubMed ID: 25402039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Concentration calibration method of ambient trace-gas monitoring with tunable diode laser absorption spectroscopy].
    Kan RF; Liu WQ; Zhang YJ; Liu JG; Wang M; Gao SH; Chen J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Mar; 26(3):392-5. PubMed ID: 16830737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO.
    Vaughan S; Gherman T; Ruth AA; Orphal J
    Phys Chem Chem Phys; 2008 Aug; 10(30):4471-7. PubMed ID: 18654688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trace gas absorption spectroscopy using laser difference-frequency spectrometer for environmental application.
    Chen W; Cazier F; Boucher D; Tittel FK; Davies PB
    Laser Phys; 2001 May; 11(5):594-9. PubMed ID: 12143894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy.
    Werle PW; Mazzinghi P; D'Amato F; De Rosa M; Maurer K; Slemr F
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jul; 60(8-9):1685-705. PubMed ID: 15248940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media.
    Pifferi A; Torricelli A; Taroni P; Comelli D; Bassi A; Cubeddu R
    Rev Sci Instrum; 2007 May; 78(5):053103. PubMed ID: 17552808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A broadband absorption spectrometer using light emitting diodes for ultrasensitive, in situ trace gas detection.
    Langridge JM; Ball SM; Shillings AJ; Jones RL
    Rev Sci Instrum; 2008 Dec; 79(12):123110. PubMed ID: 19123548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absorption and wavelength modulation spectroscopy of NO2 using a tunable, external cavity continuous wave quantum cascade laser.
    Karpf A; Rao GN
    Appl Opt; 2009 Jan; 48(2):408-13. PubMed ID: 19137055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time trace gas sensor using a multimode diode laser and multiple-line integrated cavity enhanced absorption spectroscopy.
    Karpf A; Rao GN
    Appl Opt; 2015 Jul; 54(19):6085-92. PubMed ID: 26193156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: optimization and performance evaluation.
    Liu K; Yi H; Kosterev AA; Chen W; Dong L; Wang L; Tan T; Zhang W; Tittel FK; Gao X
    Rev Sci Instrum; 2010 Oct; 81(10):103103. PubMed ID: 21034071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time, subsecond, multicomponent breath analysis by Optical Parametric Oscillator based Off-Axis Integrated Cavity Output Spectroscopy.
    Arslanov DD; Swinkels K; Cristescu SM; Harren FJ
    Opt Express; 2011 Nov; 19(24):24078-89. PubMed ID: 22109433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved approach for ultra-sensitive detection of NO.
    Qian Y; Sun H
    Opt Express; 2011 Jan; 19(2):739-47. PubMed ID: 21263614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.