BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 19767923)

  • 1. Microvalve thickness and topography measurements in microfluidic devices by white-light confocal microscopy.
    Li S; Thorsen T; Xu Z; Fang ZP; Zhao J; Yoon SF
    Appl Opt; 2009 Sep; 48(27):5088-94. PubMed ID: 19767923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional fluorescence correlation microscope for intracellular and microfluidic measurements.
    Pan X; Foo W; Lim W; Fok MH; Liu P; Yu H; Maruyama I; Wohland T
    Rev Sci Instrum; 2007 May; 78(5):053711. PubMed ID: 17552829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser differential confocal ultra-long focal length measurement.
    Zhao W; Sun R; Qiu L; Sha D
    Opt Express; 2009 Oct; 17(22):20051-62. PubMed ID: 19997229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and fabrication of chemically robust three-dimensional microfluidic valves.
    Maltezos G; Garcia E; Hanrahan G; Gomez FA; Vyawahare S; van Dam RM; Chen Y; Scherer A
    Lab Chip; 2007 Sep; 7(9):1209-11. PubMed ID: 17713623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new parallel plate shear cell for in situ real-space measurements of complex fluids under shear flow.
    Wu YL; Brand JH; van Gemert JL; Verkerk J; Wisman H; van Blaaderen A; Imhof A
    Rev Sci Instrum; 2007 Oct; 78(10):103902. PubMed ID: 17979430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Confocal optical system: a novel noninvasive sensor to study mixing.
    Vallejos JR; Kostov Y; Marten MR; Rao G
    Biotechnol Prog; 2005; 21(5):1531-6. PubMed ID: 16209558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microvalve-actuated precise control of individual droplets in microfluidic devices.
    Zeng S; Li B; Su X; Qin J; Lin B
    Lab Chip; 2009 May; 9(10):1340-3. PubMed ID: 19417898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of concentration gradient from a wave-like pattern by high frequency vibration of liquid-liquid interface.
    Motoo K; Toda N; Arai F; Fukuda T; Sekiyama K; Nakajima M
    Biomed Microdevices; 2008 Jun; 10(3):329-35. PubMed ID: 18071908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and characterization of a nanoliter drug-delivery MEMS micropump with circular bossed membrane.
    Yih TC; Wei C; Hammad B
    Nanomedicine; 2005 Jun; 1(2):164-75. PubMed ID: 17292074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring biofilm development in a microfluidic device using modified confocal reflection microscopy.
    Yawata Y; Toda K; Setoyama E; Fukuda J; Suzuki H; Uchiyama H; Nomura N
    J Biosci Bioeng; 2010 Sep; 110(3):377-80. PubMed ID: 20547370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase change microvalve for integrated devices.
    Pal R; Yang M; Johnson BN; Burke DT; Burns MA
    Anal Chem; 2004 Jul; 76(13):3740-8. PubMed ID: 15228349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of implantable microfabricated fluid delivery devices.
    Rathnasingham R; Kipke DR; Bledsoe SC; McLaren JD
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):138-45. PubMed ID: 14723503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of passive mixing behavior in a poly(dimethylsiloxane) microfluidic channel using confocal fluorescence and Raman microscopy.
    Park T; Lee M; Choo J; Kim YS; Lee EK; Kim DJ; Lee SH
    Appl Spectrosc; 2004 Oct; 58(10):1172-9. PubMed ID: 15527517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional hydrodynamic focusing in a microfluidic Coulter counter.
    Scott R; Sethu P; Harnett CK
    Rev Sci Instrum; 2008 Apr; 79(4):046104. PubMed ID: 18447562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast microfluidic mixer with three-dimensional flow focusing for studies of biochemical kinetics.
    Gambin Y; Simonnet C; VanDelinder V; Deniz A; Groisman A
    Lab Chip; 2010 Mar; 10(5):598-609. PubMed ID: 20162235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends.
    Zhang C; Xing D; Li Y
    Biotechnol Adv; 2007; 25(5):483-514. PubMed ID: 17601695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsed-laser crossed-beam thermal lens spectrometry for detection in a microchannel: influence of the size of the excitation beam waist.
    Ghaleb KA; Georges J
    Appl Spectrosc; 2004 Sep; 58(9):1116-21. PubMed ID: 15479529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Note: real time three-dimensional topography measurement of microfluidic devices with pillar structures using confocal microscope.
    Ang KT; Fang ZP; Tay A
    Rev Sci Instrum; 2014 Feb; 85(2):026108. PubMed ID: 24593408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV.
    Kinoshita H; Kaneda S; Fujii T; Oshima M
    Lab Chip; 2007 Mar; 7(3):338-46. PubMed ID: 17330165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.