These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 19768020)

  • 1. Quenching optical breakdown with an applied electric field.
    Mullen RA; Matossian JN
    Opt Lett; 1990 Jun; 15(11):601. PubMed ID: 19768020
    [No Abstract]   [Full Text] [Related]  

  • 2. Dielectric breakdown of cell membranes.
    Zimmermann U; Pilwat G; Riemann F
    Biophys J; 1974 Nov; 14(11):881-99. PubMed ID: 4611517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical electric field strengths of onion tissues treated by pulsed electric fields.
    Asavasanti S; Ersus S; Ristenpart W; Stroeve P; Barrett DM
    J Food Sci; 2010 Sep; 75(7):E433-43. PubMed ID: 21535537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical modeling of the electrical breakdown and discharge properties of laser-generated plasma channels.
    Petrova TB; Ladouceur HD; Baronavski AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066405. PubMed ID: 18233930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study on femtosecond laser optical breakdown threshold in water mediated by aluminum nanoparticle coated with silica.
    Lin Q; Ren N; Ren Y; Chen Y; Xin Z; Fan Y; Ren X; Li L
    Opt Express; 2018 Dec; 26(26):34200-34213. PubMed ID: 30650847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High electric field measurement using slab-coupled optical sensors.
    Stan N; Seng F; Shumway L; King R; Selfridge R; Schultz S
    Appl Opt; 2016 Jan; 55(3):603-10. PubMed ID: 26835936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of Charge Transfer and Quenching of Photoluminescence of Capped CdS Quantum Dots.
    Mehata MS
    Sci Rep; 2015 Jul; 5():12056. PubMed ID: 26166553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of magnetic field on the electric breakdown in penning ion source.
    Mahjour-Shafiei M; Noori H; Ranjbar AH
    Rev Sci Instrum; 2011 Nov; 82(11):113502. PubMed ID: 22128971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slab coupled optical fiber sensor calibration.
    Whitaker B; Noren J; Chadderdon S; Wang W; Forber R; Selfridge R; Schultz S
    Rev Sci Instrum; 2013 Feb; 84(2):023108. PubMed ID: 23464196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Space Charge Modulated Electrical Breakdown.
    Li S; Zhu Y; Min D; Chen G
    Sci Rep; 2016 Sep; 6():32588. PubMed ID: 27599577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric-field-induced enhancement/quenching of photoluminescence of pi-conjugated polymer S3-PPV: excitation energy dependence.
    Mehata MS; Hsu CS; Lee YP; Ohta N
    J Phys Chem B; 2010 May; 114(19):6258-65. PubMed ID: 20423046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High sensitive space electric field sensing based on micro fiber interferometer with field force driven gold nanofilm.
    Zhu T; Zhou L; Liu M; Zhang J; Shi L
    Sci Rep; 2015 Oct; 5():15802. PubMed ID: 26507680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release and uptake of haemoglobin and ions in red blood cells induced by dielectric breakdown.
    Riemann F; Zimmermann U; Pilwat G
    Biochim Biophys Acta; 1975 Jul; 394(3):449-62. PubMed ID: 1131371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid breakdown mechanisms of open air nanosecond dielectric barrier discharges.
    Ito T; Kanazawa T; Hamaguchi S
    Phys Rev Lett; 2011 Aug; 107(6):065002. PubMed ID: 21902331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field-induced delocalization and Zener breakdown in semiconductor superlattices.
    Rosam B; Meinhold D; Löser F; Lyssenko VG; Glutsch S; Bechstedt F; Rossi F; Köhler K; Leo K
    Phys Rev Lett; 2001 Feb; 86(7):1307-10. PubMed ID: 11178070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quenching of electronically excited N
    Sharipov GL; Tukhbatullin AA; Bagautdinova AR
    Luminescence; 2017 Aug; 32(5):824-828. PubMed ID: 27996188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significantly Enhanced Energy Density in Nanocomposite Capacitors Combining the TiO
    Yao L; Pan Z; Liu S; Zhai J; Chen HH
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):26343-26351. PubMed ID: 27623096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurements of electric-field strengths in ionization fronts during breakdown.
    Wagenaars E; Bowden MD; Kroesen GM
    Phys Rev Lett; 2007 Feb; 98(7):075002. PubMed ID: 17359030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric Conductivity and Dielectric-Breakdown Behavior for Polyurethane Magnetic Elastomers.
    Sasaki S; Tsujiei Y; Kawai M; Mitsumata T
    J Phys Chem B; 2017 Feb; 121(7):1740-1747. PubMed ID: 28191972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Band gaps in jagged and straight graphene nanoribbons tunable by an external electric field.
    Saroka VA; Batrakov KG; Demin VA; Chernozatonskii LA
    J Phys Condens Matter; 2015 Apr; 27(14):145305. PubMed ID: 25791088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.