These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 19768044)

  • 1. Reflective high-finesse interferometers as effective intrapulse laser frequency stabilizers.
    Palange E; Salvetti G
    Opt Lett; 1990 Jun; 15(12):676-8. PubMed ID: 19768044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of intrapulse frequency chirping in long-pulse CO(2) lasers employing perturbation-insensitive optical cavities.
    Palange E; Salvetti G
    Appl Opt; 1991 Sep; 30(27):3832-41. PubMed ID: 20706469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Longitudinal-mode selectivity and perturbation sensitivity of multimirror laser cavities.
    Palange E; Salvetti G
    Appl Opt; 1991 Sep; 30(27):3821-31. PubMed ID: 20706468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transverse modes in laser cavities terminating in reflective multipass interferometers.
    Nichelatti E; Salvetti G
    Appl Opt; 1995 May; 34(15):2655-8. PubMed ID: 21052407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-reflective coupling of two optical cavities with 3-port diffraction gratings.
    Burmeister O; Britzger M; Thüring A; Friedrich D; Brückner F; Danzmann K; Schnabel R
    Opt Express; 2010 Apr; 18(9):9119-32. PubMed ID: 20588760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple technique for accurate and complete characterisation of a Fabry-Perot cavity.
    Locke CR; Stuart D; Ivanov EN; Luiten AN
    Opt Express; 2009 Nov; 17(24):21935-43. PubMed ID: 19997438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mode suppression of 53 dB and pulse repetition rates of 2.87 and 36.4 GHz in a compact, mode-locked fiber laser comprising coupled Fabry-Perot cavities of low finesse (F = 2).
    Cheng H; Zhou Y; Mironov AE; Wang W; Qiao T; Lin W; Qian Q; Xu S; Yang Z; Eden JG
    Opt Express; 2017 Oct; 25(20):24400-24409. PubMed ID: 29041385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absolute frequency stability of a diode-laser-pumped Nd:YAG laser stabilized to a high-finesse optical cavity.
    Nakagawa K; Shelkovnikov AS; Katsuda T; Ohtsu M
    Appl Opt; 1994 Sep; 33(27):6383-6. PubMed ID: 20941174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical model for low finesse, external cavity, fiber Fabry-Perot interferometers including multiple reflections and angular misalignment.
    Wilkinson PR; Pratt JR
    Appl Opt; 2011 Aug; 50(23):4671-80. PubMed ID: 21833146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable, mode-matched, medium-finesse optical cavity incorporating a microcantilever mirror: optical characterization and laser cooling.
    Harris JG; Zwickl BM; Jayich AM
    Rev Sci Instrum; 2007 Jan; 78(1):013107. PubMed ID: 17503907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency stability of high-finesse interferometers.
    Repasky KS; Wessel JG; Carlsten JL
    Appl Opt; 1996 Feb; 35(4):609-11. PubMed ID: 21069046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Location of a time-varying disturbance using an array of identical fiber-optic interferometers interrogated by CW DFB laser.
    Manuel RM; Shlyagin MG; Miridonov SV
    Opt Express; 2008 Dec; 16(25):20666-75. PubMed ID: 19065206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent pulse stacking amplification using low-finesse Gires-Tournois interferometers.
    Zhou T; Ruppe J; Zhu C; Hu IN; Nees J; Galvanauskas A
    Opt Express; 2015 Mar; 23(6):7442-62. PubMed ID: 25837085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical characterization of ultrahigh diffraction efficiency gratings.
    Bunkowski A; Burmeister O; Clausnitzer T; Kley EB; Tünnermann A; Danzmann K; Schnabel R
    Appl Opt; 2006 Aug; 45(23):5795-9. PubMed ID: 16926863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel laser machining of optical fibers for long cavities with low birefringence.
    Takahashi H; Morphew J; Oručević F; Noguchi A; Kassa E; Keller M
    Opt Express; 2014 Dec; 22(25):31317-28. PubMed ID: 25607080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technique for in situ measurement of free spectral range and transverse mode spacing of optical cavities.
    Stochino A; Arai K; Adhikari RX
    Appl Opt; 2012 Sep; 51(27):6571-7. PubMed ID: 23033027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single transverse mode optical resonators.
    Kuznetsov M; Stern M; Coppeta J
    Opt Express; 2005 Jan; 13(1):171-81. PubMed ID: 19488341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency stability of a 10 GHz optical frequency comb from a semiconductor-based mode-locked laser with an intracavity 10,000 finesse etalon.
    Davila-Rodriguez J; Bagnell K; Delfyett PJ
    Opt Lett; 2013 Sep; 38(18):3665-8. PubMed ID: 24104841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization.
    Lim J; Savchenkov AA; Dale E; Liang W; Eliyahu D; Ilchenko V; Matsko AB; Maleki L; Wong CW
    Nat Commun; 2017 Mar; 8(1):8. PubMed ID: 28364116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-reflective Michelson, Sagnac, and Fabry-Perot interferometers based on grating beam splitters.
    Sun KX; Byer RL
    Opt Lett; 1998 Apr; 23(8):567-9. PubMed ID: 18084578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.