These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 19768109)

  • 1. Determinants of leukocyte margination in rectangular microchannels.
    Jain A; Munn LL
    PLoS One; 2009 Sep; 4(9):e7104. PubMed ID: 19768109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. White blood cell margination in microcirculation.
    Fedosov DA; Gompper G
    Soft Matter; 2014 May; 10(17):2961-70. PubMed ID: 24695813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of fibrinogen on leukocyte margination and adhesion in postcapillary venules.
    Pearson MJ; Lipowsky HH
    Microcirculation; 2004; 11(3):295-306. PubMed ID: 15280083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Internal Viscosity-Dependent Margination of Red Blood Cells in Microfluidic Channels.
    Ahmed F; Mehrabadi M; Liu Z; Barabino GA; Aidun CK
    J Biomech Eng; 2018 Jun; 140(6):. PubMed ID: 29715334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Traffic of leukocytes in microfluidic channels with rectangular and rounded cross-sections.
    Yang X; Forouzan O; Burns JM; Shevkoplyas SS
    Lab Chip; 2011 Oct; 11(19):3231-40. PubMed ID: 21847500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow.
    Rodrigues RO; Pinho D; Faustino V; Lima R
    Biomed Microdevices; 2015 Dec; 17(6):108. PubMed ID: 26482154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Margination of white blood cells in microcapillary flow.
    Fedosov DA; Fornleitner J; Gompper G
    Phys Rev Lett; 2012 Jan; 108(2):028104. PubMed ID: 22324714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidics analysis of red blood cell membrane viscoelasticity.
    Tomaiuolo G; Barra M; Preziosi V; Cassinese A; Rotoli B; Guido S
    Lab Chip; 2011 Feb; 11(3):449-54. PubMed ID: 21076756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro measurement of particle margination in the microchannel flow: effect of varying hematocrit.
    Fitzgibbon S; Spann AP; Qi QM; Shaqfeh ESG
    Biophys J; 2015 May; 108(10):2601-2608. PubMed ID: 25992738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system.
    Mehri R; Mavriplis C; Fenech M
    PLoS One; 2018; 13(7):e0199911. PubMed ID: 30024907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformability based cell margination--a simple microfluidic design for malaria-infected erythrocyte separation.
    Hou HW; Bhagat AA; Chong AG; Mao P; Tan KS; Han J; Lim CT
    Lab Chip; 2010 Oct; 10(19):2605-13. PubMed ID: 20689864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic postcapillary expansions for enhancing rare blood cell separation on a microfluidic chip.
    Jain A; Munn LL
    Lab Chip; 2011 Sep; 11(17):2941-7. PubMed ID: 21773633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of nanoparticle delivery in microcirculation using a microfluidic device.
    Thomas A; Tan J; Liu Y
    Microvasc Res; 2014 Jul; 94():17-27. PubMed ID: 24788074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vascular mimetics based on microfluidics for imaging the leukocyte--endothelial inflammatory response.
    Schaff UY; Xing MM; Lin KK; Pan N; Jeon NL; Simon SI
    Lab Chip; 2007 Apr; 7(4):448-56. PubMed ID: 17389960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microfluidic device for continuous white blood cell separation and lysis from whole blood.
    Kim M; Mo Jung S; Lee KH; Jun Kang Y; Yang S
    Artif Organs; 2010 Nov; 34(11):996-1002. PubMed ID: 21092042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red cell aggregation as a factor influencing margination and adhesion of leukocytes and platelets.
    Nash GB; Watts T; Thornton C; Barigou M
    Clin Hemorheol Microcirc; 2008; 39(1-4):303-10. PubMed ID: 18503139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the effect of microstructural changes of blood on energy dissipation in Couette flow.
    Kaliviotis E; Yianneskis M
    Clin Hemorheol Microcirc; 2008; 39(1-4):235-42. PubMed ID: 18503131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear stress-dependent cell detachment from temperature-responsive cell culture surfaces in a microfluidic device.
    Tang Z; Akiyama Y; Itoga K; Kobayashi J; Yamato M; Okano T
    Biomaterials; 2012 Oct; 33(30):7405-11. PubMed ID: 22818649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of red blood cell aggregation on microparticle wall adhesion in circular microchannels.
    Stroobach M; Haya L; Fenech M
    Med Eng Phys; 2019 Jul; 69():100-108. PubMed ID: 31088761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.