These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 19768201)

  • 41. Detection and identification of Campylobacter spp. using the polymerase chain reaction.
    Giesendorf BA; Quint WG
    Cell Mol Biol (Noisy-le-grand); 1995 Jul; 41(5):625-38. PubMed ID: 7580843
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automated methods for multiplexed pathogen detection.
    Straub TM; Dockendorff BP; Quiñonez-Díaz MD; Valdez CO; Shutthanandan JI; Tarasevich BJ; Grate JW; Bruckner-Lea CJ
    J Microbiol Methods; 2005 Sep; 62(3):303-16. PubMed ID: 15979746
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Use of the real-time RT-PCR method for investigation of small stable RNA expression level in human epidermoid carcinoma cells A431].
    Nikitina TV; Nazarova NIu; Tishchenko LI; Tuohimaa P; Sedova VM
    Tsitologiia; 2003; 45(4):392-402. PubMed ID: 14520871
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of a real-time PCR assay based on primer-probe energy transfer for the detection of swine vesicular disease virus.
    Hakhverdyan M; Rasmussen TB; Thorén P; Uttenthal A; Belák S
    Arch Virol; 2006 Dec; 151(12):2365-76. PubMed ID: 16835700
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polymerase chain reaction in diagnosis of Borrelia burgdorferi infections and studies on taxonomic classification.
    Lebech AM
    APMIS Suppl; 2002; (105):1-40. PubMed ID: 11985118
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An alternative method to amplify RNA without loss of signal conservation for expression analysis with a proteinase DNA microarray in the ArrayTube format.
    Schüler S; Wenz I; Wiederanders B; Slickers P; Ehricht R
    BMC Genomics; 2006 Jun; 7():144. PubMed ID: 16768788
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Broad-range real-time PCR assay for the rapid identification of cell-line contaminants and clinically important mollicute species.
    Störmer M; Vollmer T; Henrich B; Kleesiek K; Dreier J
    Int J Med Microbiol; 2009 Apr; 299(4):291-300. PubMed ID: 18926769
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Time-resolved fluorometry in end-point and real-time PCR quantification of nucleic acids.
    Nurmi J; Lilja H; Ylikoski A
    Luminescence; 2000; 15(6):381-8. PubMed ID: 11114115
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Detection of Erwinia amylovora by novel chromosomal polymerase chain reaction primers.
    Obradović D; Balaz J; Kevresan S
    Mikrobiologiia; 2007; 76(6):844-52. PubMed ID: 18297877
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Point-of-care molecular diagnostic systems--past, present and future.
    Holland CA; Kiechle FL
    Curr Opin Microbiol; 2005 Oct; 8(5):504-9. PubMed ID: 16098787
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5'-transgene integration sequence.
    Yang L; Xu S; Pan A; Yin C; Zhang K; Wang Z; Zhou Z; Zhang D
    J Agric Food Chem; 2005 Nov; 53(24):9312-8. PubMed ID: 16302741
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Real-time polymerase chain reaction (RT-PCR)].
    Wiedro K; Stachowska E; Chlubek D
    Ann Acad Med Stetin; 2007; 53(3):5-9. PubMed ID: 18595479
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrochemical real-time nucleic acid amplification: towards point-of-care quantification of pathogens.
    Patterson AS; Hsieh K; Soh HT; Plaxco KW
    Trends Biotechnol; 2013 Dec; 31(12):704-12. PubMed ID: 24209384
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Smartphone-Enabled Detection Strategies for Portable PCR-Based Diagnostics.
    Priye A; Ugaz VM
    Methods Mol Biol; 2017; 1571():251-266. PubMed ID: 28281261
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Real-time monitoring of strand-displacement DNA amplification by a contactless electrochemical microsystem using interdigitated electrodes.
    Fang X; Zhang H; Zhang F; Jing F; Mao H; Jin Q; Zhao J
    Lab Chip; 2012 Sep; 12(17):3190-6. PubMed ID: 22773155
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Point-of-care nucleic acid detection using nanotechnology.
    Hartman MR; Ruiz RC; Hamada S; Xu C; Yancey KG; Yu Y; Han W; Luo D
    Nanoscale; 2013 Nov; 5(21):10141-54. PubMed ID: 24057263
    [TBL] [Abstract][Full Text] [Related]  

  • 57. μ-eLCR: a microfabricated device for electrochemical detection of DNA base changes in breast cancer cell lines.
    Wee EJ; Rauf S; Koo KM; Shiddiky MJ; Trau M
    Lab Chip; 2013 Nov; 13(22):4385-91. PubMed ID: 24061339
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Microbiological point of care tests].
    Book M; Lehmann LE; Zhang X; Stüber F
    Anasthesiol Intensivmed Notfallmed Schmerzther; 2010 Nov; 45(11-12):732-9. PubMed ID: 21120772
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plasmonic and label-free real-time quantitative PCR for point-of-care diagnostics.
    Mohammadyousef P; Paliouras M; Trifiro MA; Kirk AG
    Analyst; 2021 Sep; 146(18):5619-5630. PubMed ID: 34378560
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of electrochemical immunosensors towards point of care diagnostics.
    Wan Y; Su Y; Zhu X; Liu G; Fan C
    Biosens Bioelectron; 2013 Sep; 47():1-11. PubMed ID: 23542064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.