BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 19768221)

  • 1. Fluorescence turn-on detection of iodide, iodate and total iodine using fluorescein-5-isothiocyanate-modified gold nanoparticles.
    Chen YM; Cheng TL; Tseng WL
    Analyst; 2009 Oct; 134(10):2106-12. PubMed ID: 19768221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective detection of iodide and cyanide anions using gold-nanoparticle-based fluorescent probes.
    Wei SC; Hsu PH; Lee YF; Lin YW; Huang CC
    ACS Appl Mater Interfaces; 2012 May; 4(5):2652-8. PubMed ID: 22524233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of fluorosurfactant-modified gold nanoparticles in selective detection of homocysteine thiolactone: remover and sensor.
    Huang CC; Tseng WL
    Anal Chem; 2008 Aug; 80(16):6345-50. PubMed ID: 18613648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence correlation spectroscopy reveals strong fluorescence quenching of FITC adducts on PEGylated gold nanoparticles in water and the presence of fluorescent aggregates of desorbed thiolate ligands.
    Loumaigne M; Praho R; Nutarelli D; Werts MH; Débarre A
    Phys Chem Chem Phys; 2010 Sep; 12(36):11004-14. PubMed ID: 20668732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion.
    Huang KW; Yu CJ; Tseng WL
    Biosens Bioelectron; 2010 Jan; 25(5):984-9. PubMed ID: 19782557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colorimetric detection of mercury(II) in a high-salinity solution using gold nanoparticles capped with 3-mercaptopropionate acid and adenosine monophosphate.
    Yu CJ; Tseng WL
    Langmuir; 2008 Nov; 24(21):12717-22. PubMed ID: 18839969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DNA hybridization detection based on fluorescence resonance energy transfer between dye-doped core-shell silica nanoparticles and gold nanoparticles.
    Gao F; Cui P; Chen X; Ye Q; Li M; Wang L
    Analyst; 2011 Oct; 136(19):3973-80. PubMed ID: 21845282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold nanoparticles-based fluorescence resonance energy transfer for competitive immunoassay of biomolecules.
    Chen J; Huang Y; Zhao S; Lu X; Tian J
    Analyst; 2012 Dec; 137(24):5885-90. PubMed ID: 23120746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colorimetric sensing of silver(I) and mercury(II) ions based on an assembly of Tween 20-stabilized gold nanoparticles.
    Lin CY; Yu CJ; Lin YH; Tseng WL
    Anal Chem; 2010 Aug; 82(16):6830-7. PubMed ID: 20704372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overall water splitting under visible light through a two-step photoexcitation between TaON and WO3 in the presence of an iodate-iodide shuttle redox mediator.
    Abe R; Higashi M; Domen K
    ChemSusChem; 2011 Feb; 4(2):228-37. PubMed ID: 21275062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A long lifetime chemical sensor: study on fluorescence property of fluorescein isothiocyanate and preparation of pH chemical sensor.
    Ma LY; Wang HY; Xie H; Xu LX
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jul; 60(8-9):1865-72. PubMed ID: 15248962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speciation of ¹²⁹I in sea, lake and rain waters.
    Lehto J; Räty T; Hou X; Paatero J; Aldahan A; Possnert G; Flinkman J; Kankaanpää H
    Sci Total Environ; 2012 Mar; 419():60-7. PubMed ID: 22285065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Mn2+ on oligonucleotide-gold nanoparticle hybrids for colorimetric sensing of Hg2+: improving colorimetric sensitivity and accelerating color change.
    Yu CJ; Cheng TL; Tseng WL
    Biosens Bioelectron; 2009 Sep; 25(1):204-10. PubMed ID: 19631521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive turn-on fluorescent detection of melamine based on fluorescence resonance energy transfer.
    Guo L; Zhong J; Wu J; Fu F; Chen G; Chen Y; Zheng X; Lin S
    Analyst; 2011 Apr; 136(8):1659-63. PubMed ID: 21359305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iodide and iodate (129I and 127I) in surface water of the Baltic Sea, Kattegat and Skagerrak.
    Hansen V; Yi P; Hou X; Aldahan A; Roos P; Possnert G
    Sci Total Environ; 2011 Dec; 412-413():296-303. PubMed ID: 22033356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Au25(SG)18 as a fluorescent iodide sensor.
    Wang M; Wu Z; Yang J; Wang G; Wang H; Cai W
    Nanoscale; 2012 Jul; 4(14):4087-90. PubMed ID: 22522406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of iodide, iodate and organo-iodine in waters with a new total organic iodine measurement approach.
    Gong T; Zhang X
    Water Res; 2013 Nov; 47(17):6660-9. PubMed ID: 24075720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study on the determination of iodine by inductively coupled plasma atomic emission spectrometry].
    Fan Z; Jin X; Wang Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Jun; 21(3):370-2. PubMed ID: 12947671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly selective detection of histidine using o-phthaldialdehyde derivatization after the removal of aminothiols through Tween 20-capped gold nanoparticles.
    Huang CC; Tseng WL
    Analyst; 2009 Aug; 134(8):1699-705. PubMed ID: 20448940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Kinetic spectrophotometric determination of iodate in iodized salt samples].
    Wang Y; Ni YN
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1387-9. PubMed ID: 18800730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.