BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 19768437)

  • 1. Analysis of properties of cilia using Tetrahymena thermophila.
    Rajagopalan V; Corpuz EO; Hubenschmidt MJ; Townsend CR; Asai DJ; Wilkes DE
    Methods Mol Biol; 2009; 586():283-99. PubMed ID: 19768437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted gene disruption of dynein heavy chain 7 of Tetrahymena thermophila results in altered ciliary waveform and reduced swim speed.
    Wood CR; Hard R; Hennessey TM
    J Cell Sci; 2007 Sep; 120(Pt 17):3075-85. PubMed ID: 17684060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of genes encoding predicted inner arm dynein heavy chains causes motility phenotypes in Tetrahymena.
    Liu S; Hard R; Rankin S; Hennessey T; Pennock DG
    Cell Motil Cytoskeleton; 2004 Nov; 59(3):201-14. PubMed ID: 15468164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in genes encoding inner arm dynein heavy chains in Tetrahymena thermophila lead to axonemal hypersensitivity to Ca2+.
    Liu S; Hennessey T; Rankin S; Pennock DG
    Cell Motil Cytoskeleton; 2005 Nov; 62(3):133-40. PubMed ID: 16173097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynein light chain family in Tetrahymena thermophila.
    Wilkes DE; Rajagopalan V; Chan CW; Kniazeva E; Wiedeman AE; Asai DJ
    Cell Motil Cytoskeleton; 2007 Feb; 64(2):82-96. PubMed ID: 17009324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulating ciliary protein-encoding genes in Tetrahymena thermophila.
    Dave D; Wloga D; Gaertig J
    Methods Cell Biol; 2009; 93():1-20. PubMed ID: 20409809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of dynein genes in Tetrahymena.
    Wilkes DE; Bennardo N; Chan CW; Chang YL; Corpuz EO; DuMond J; Eboreime JA; Erickson J; Hetzel J; Heyer EE; Hubenschmidt MJ; Kniazeva E; Kuhn H; Lum M; Sand A; Schep A; Sergeeva O; Supab N; Townsend CR; Ryswyk LV; Watson HE; Wiedeman AE; Rajagopalan V; Asai DJ
    Methods Cell Biol; 2009; 92():11-30. PubMed ID: 20409796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PHLP2 is essential and plays a role in ciliogenesis and microtubule assembly in Tetrahymena thermophila.
    Bregier C; Krzemień-Ojak L; Włoga D; Jerka-Dziadosz M; Joachimiak E; Batko K; Filipiuk I; Smietanka U; Gaertig J; Fabczak S; Fabczak H
    J Cell Physiol; 2013 Nov; 228(11):2175-89. PubMed ID: 23588994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynein-2 and ciliogenesis in Tetrahymena.
    Asai DJ; Rajagopalan V; Wilkes DE
    Cell Motil Cytoskeleton; 2009 Aug; 66(8):673-7. PubMed ID: 19562737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The actin gene ACT1 is required for phagocytosis, motility, and cell separation of Tetrahymena thermophila.
    Williams NE; Tsao CC; Bowen J; Hehman GL; Williams RJ; Frankel J
    Eukaryot Cell; 2006 Mar; 5(3):555-67. PubMed ID: 16524910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inner arm dynein 1 is essential for Ca++-dependent ciliary reversals in Tetrahymena thermophila.
    Hennessey TM; Kim DY; Oberski DJ; Hard R; Rankin SA; Pennock DG
    Cell Motil Cytoskeleton; 2002 Dec; 53(4):281-8. PubMed ID: 12378538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted gene knockout of inner arm 1 in Tetrahymena thermophila.
    Angus SP; Edelmann RE; Pennock DG
    Eur J Cell Biol; 2001 Jul; 80(7):486-97. PubMed ID: 11499791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a novel actin-related protein in Tetrahymena cilia.
    Kuribara S; Kato M; Kato-Minoura T; Numata O
    Cell Motil Cytoskeleton; 2006 Jul; 63(7):437-46. PubMed ID: 16732560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular polarity in ciliates: persistence of global polarity in a disorganized mutant of Tetrahymena thermophila that disrupts cytoskeletal organization.
    Jerka-Dziadosz M; Jenkins LM; Nelsen EM; Williams NE; Jaeckel-Williams R; Frankel J
    Dev Biol; 1995 Jun; 169(2):644-61. PubMed ID: 7781905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dephosphorylation of inner arm 1 is associated with ciliary reversals in Tetrahymena thermophila.
    Deckman CM; Pennock DG
    Cell Motil Cytoskeleton; 2004 Feb; 57(2):73-83. PubMed ID: 14691947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneity of dynein structure implies coordinated suppression of dynein motor activity in the axoneme.
    Maheshwari A; Ishikawa T
    J Struct Biol; 2012 Aug; 179(2):235-41. PubMed ID: 22569523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynein-2 affects the regulation of ciliary length but is not required for ciliogenesis in Tetrahymena thermophila.
    Rajagopalan V; Subramanian A; Wilkes DE; Pennock DG; Asai DJ
    Mol Biol Cell; 2009 Jan; 20(2):708-20. PubMed ID: 19019986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Native doublet microtubules from Tetrahymena thermophila reveal the importance of outer junction proteins.
    Kubo S; Black CS; Joachimiak E; Yang SK; Legal T; Peri K; Khalifa AAZ; Ghanaeian A; McCafferty CL; Valente-Paterno M; De Bellis C; Huynh PM; Fan Z; Marcotte EM; Wloga D; Bui KH
    Nat Commun; 2023 Apr; 14(1):2168. PubMed ID: 37061538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation of a 70 kD Tetrahymena ciliary membrane protein is associated with ciliogenesis.
    Gitz DL; Pennock DG
    Cytobios; 1997; 91(366-367):155-69. PubMed ID: 9670473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The functional expression and motile properties of recombinant outer arm dynein from Tetrahymena.
    Edamatsu M
    Biochem Biophys Res Commun; 2014 May; 447(4):596-601. PubMed ID: 24747078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.