These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19768623)

  • 21. Identifying acetylated lignin units in non-wood fibers using pyrolysis-gas chromatography/mass spectrometry.
    del Río JC; Gutiérrez A; Martínez AT
    Rapid Commun Mass Spectrom; 2004; 18(11):1181-5. PubMed ID: 15164346
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pyrolysis/gas chromatography/mass spectrometry of lignocellulose.
    Galletti GC; Bocchini P
    Rapid Commun Mass Spectrom; 1995; 9(9):815-26. PubMed ID: 7655075
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Variation in cell wall composition among forage maize (Zea mays L.) inbred lines and its impact on digestibility: analysis of neutral detergent fiber composition by pyrolysis-gas chromatography-mass spectrometry.
    Fontaine AS; Bout S; Barrière Y; Vermerris W
    J Agric Food Chem; 2003 Dec; 51(27):8080-7. PubMed ID: 14690400
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NOx and N2O precursors from biomass pyrolysis: role of cellulose, hemicellulose and lignin.
    Ren Q; Zhao C
    Environ Sci Technol; 2013 Aug; 47(15):8955-61. PubMed ID: 23848228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-throughput Screening of Recalcitrance Variations in Lignocellulosic Biomass: Total Lignin, Lignin Monomers, and Enzymatic Sugar Release.
    Decker SR; Sykes RW; Turner GB; Lupoi JS; Doepkke C; Tucker MP; Schuster LA; Mazza K; Himmel ME; Davis MF; Gjersing E
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26437006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of autocatalytic kinetics to obtain composition of lignocellulosic materials.
    Barneto AG; Carmona JA; Alfonso JE; Alcaide LJ
    Bioresour Technol; 2009 Sep; 100(17):3963-73. PubMed ID: 19369063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Blind image analysis for the compositional and structural characterization of plant cell walls.
    Perera PN; Schmidt M; Schuck PJ; Adams PD
    Anal Chim Acta; 2011 Sep; 702(2):172-7. PubMed ID: 21839194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 13C cell wall enrichment and ionic liquid NMR analysis: progress towards a high-throughput detailed chemical analysis of the whole plant cell wall.
    Foston M; Samuel R; Ragauskas AJ
    Analyst; 2012 Sep; 137(17):3904-9. PubMed ID: 22768393
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lignin engineering.
    Vanholme R; Morreel K; Ralph J; Boerjan W
    Curr Opin Plant Biol; 2008 Jun; 11(3):278-85. PubMed ID: 18434238
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-throughput mass spectrometer using atmospheric pressure ionization and a cylindrical ion trap array.
    Misharin AS; Laughlin BC; Vilkov A; Takáts Z; Ouyang Z; Cooks RG
    Anal Chem; 2005 Jan; 77(2):459-70. PubMed ID: 15649041
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Covalent linkages between cellulose and lignin in cell walls of coniferous and nonconiferous woods.
    Jin Z; Katsumata KS; Lam TB; Iiyama K
    Biopolymers; 2006 Oct; 83(2):103-10. PubMed ID: 16673388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence for demethylation of syringyl moieties in archaeological wood using pyrolysis-gas chromatography/mass spectrometry.
    van Bergen PF; Poole I; Ogilvie TM; Caple C; Evershed RP
    Rapid Commun Mass Spectrom; 2000; 14(2):71-9. PubMed ID: 10623932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of Eucalyptus spp lignin S/G ratio: a comparison between methods.
    Nunes CA; Lima CF; Barbosa LC; Colodette JL; Gouveia AF; Silvério FO
    Bioresour Technol; 2010 Jun; 101(11):4056-61. PubMed ID: 20133130
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering of a high-throughput screening system to identify cellulosic biomass, pretreatments, and enzyme formulations that enhance sugar release.
    Studer MH; DeMartini JD; Brethauer S; McKenzie HL; Wyman CE
    Biotechnol Bioeng; 2010 Feb; 105(2):231-8. PubMed ID: 19731251
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical characterization of lignin and lipophilic fractions from leaf fibers of curaua (Ananas erectifolius).
    Marques G; Gutiérrez A; del Río JC
    J Agric Food Chem; 2007 Feb; 55(4):1327-36. PubMed ID: 17253715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New evidence for the molecular-chemical diversity of potato plant rhizodeposits obtained by pyrolysis-field Ionisation mass spectrometry.
    Schlichting A; Leinweber P
    Phytochem Anal; 2009; 20(1):1-13. PubMed ID: 18618895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In-vial pyrolysis (PyroVial) with pre- and post-sample treatment combined with different chromatographic techniques.
    Tienpont B; David F; Pereira A; Sandra P
    J Chromatogr A; 2011 Nov; 1218(46):8303-12. PubMed ID: 21993513
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of the acetyl bromide spectrophotometric method with other analytical lignin methods for determining lignin concentration in forage samples.
    Fukushima RS; Hatfield RD
    J Agric Food Chem; 2004 Jun; 52(12):3713-20. PubMed ID: 15186087
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular modeling of the structural and dynamical properties of secondary plant cell walls: influence of lignin chemistry.
    Charlier L; Mazeau K
    J Phys Chem B; 2012 Apr; 116(14):4163-74. PubMed ID: 22429051
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct visualization of straw cell walls by AFM.
    Yan L; Li W; Yang J; Zhu Q
    Macromol Biosci; 2004 Feb; 4(2):112-8. PubMed ID: 15468201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.