These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 19768681)

  • 21. Evolution of function in protein superfamilies, from a structural perspective.
    Todd AE; Orengo CA; Thornton JM
    J Mol Biol; 2001 Apr; 307(4):1113-43. PubMed ID: 11286560
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graphical models of protein-protein interaction specificity from correlated mutations and interaction data.
    Thomas J; Ramakrishnan N; Bailey-Kellogg C
    Proteins; 2009 Sep; 76(4):911-29. PubMed ID: 19306342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction.
    Dunn SD; Wahl LM; Gloor GB
    Bioinformatics; 2008 Feb; 24(3):333-40. PubMed ID: 18057019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolutionary analysis reveals collective properties and specificity in the C-type lectin and lectin-like domain superfamily.
    Ebner S; Sharon N; Ben-Tal N
    Proteins; 2003 Oct; 53(1):44-55. PubMed ID: 12945048
    [TBL] [Abstract][Full Text] [Related]  

  • 25. VISSA: a program to visualize structural features from structure sequence alignment.
    Li W; Godzik A
    Bioinformatics; 2006 Apr; 22(7):887-8. PubMed ID: 16434438
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A fast method to predict protein interaction sites from sequences.
    Gallet X; Charloteaux B; Thomas A; Brasseur R
    J Mol Biol; 2000 Sep; 302(4):917-26. PubMed ID: 10993732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interdomain contact regions and angles between adjacent short consensus repeat domains.
    Lehtinen MJ; Meri S; Jokiranta TS
    J Mol Biol; 2004 Dec; 344(5):1385-96. PubMed ID: 15561150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conserved residue clustering and protein structure prediction.
    Schueler-Furman O; Baker D
    Proteins; 2003 Aug; 52(2):225-35. PubMed ID: 12833546
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploiting sequence and structure homologs to identify protein-protein binding sites.
    Chung JL; Wang W; Bourne PE
    Proteins; 2006 Mar; 62(3):630-40. PubMed ID: 16329107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A hypothetical structural role for proline residues in the flanking segments of protein-protein interaction sites.
    Kini RM; Evans HJ
    Biochem Biophys Res Commun; 1995 Jul; 212(3):1115-24. PubMed ID: 7626100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. transAlign: using amino acids to facilitate the multiple alignment of protein-coding DNA sequences.
    Bininda-Emonds OR
    BMC Bioinformatics; 2005 Jun; 6():156. PubMed ID: 15969769
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural divergence and distant relationships in proteins: evolution of the globins.
    Lecomte JT; Vuletich DA; Lesk AM
    Curr Opin Struct Biol; 2005 Jun; 15(3):290-301. PubMed ID: 15922591
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sequence and structural analysis of cellular retinoic acid-binding proteins reveals a network of conserved hydrophobic interactions.
    Gunasekaran K; Hagler AT; Gierasch LM
    Proteins; 2004 Feb; 54(2):179-94. PubMed ID: 14696180
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated structure-based prediction of functional sites in proteins: applications to assessing the validity of inheriting protein function from homology in genome annotation and to protein docking.
    Aloy P; Querol E; Aviles FX; Sternberg MJ
    J Mol Biol; 2001 Aug; 311(2):395-408. PubMed ID: 11478868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural alignment of protein--DNA interfaces: insights into the determinants of binding specificity.
    Siggers TW; Silkov A; Honig B
    J Mol Biol; 2005 Feb; 345(5):1027-45. PubMed ID: 15644202
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites.
    Laurie AT; Jackson RM
    Bioinformatics; 2005 May; 21(9):1908-16. PubMed ID: 15701681
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutational analysis and NMR spectroscopy of quail cysteine and glycine-rich protein CRP2 reveal an intrinsic segmental flexibility of LIM domains.
    Kloiber K; Weiskirchen R; Kräutler B; Bister K; Konrat R
    J Mol Biol; 1999 Oct; 292(4):893-908. PubMed ID: 10525413
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional restraints on the patterns of amino acid substitutions: application to sequence-structure homology recognition.
    Chelliah V; Blundell T; Mizuguchi K
    Proteins; 2005 Dec; 61(4):722-31. PubMed ID: 16193489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and functional studies of titin's fn3 modules reveal conserved surface patterns and binding to myosin S1--a possible role in the Frank-Starling mechanism of the heart.
    Muhle-Goll C; Habeck M; Cazorla O; Nilges M; Labeit S; Granzier H
    J Mol Biol; 2001 Oct; 313(2):431-47. PubMed ID: 11800567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly covarying residues have a functional role in antibody constant domains.
    Proctor EA; Kota P; Demarest SJ; Caravella JA; Dokholyan NV
    Proteins; 2013 May; 81(5):884-95. PubMed ID: 23280585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.