BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 19768790)

  • 1. Influence of FGF2 and PEG hydrogel matrix properties on hMSC viability and spreading.
    King WJ; Jongpaiboonkit L; Murphy WL
    J Biomed Mater Res A; 2010 Jun; 93(3):1110-23. PubMed ID: 19768790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening for 3D environments that support human mesenchymal stem cell viability using hydrogel arrays.
    Jongpaiboonkit L; King WJ; Murphy WL
    Tissue Eng Part A; 2009 Feb; 15(2):343-53. PubMed ID: 18759676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An approach to modulate degradation and mesenchymal stem cell behavior in poly(ethylene glycol) networks.
    Hudalla GA; Eng TS; Murphy WL
    Biomacromolecules; 2008 Mar; 9(3):842-9. PubMed ID: 18288800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogel arrays formed via differential wettability patterning enable combinatorial screening of stem cell behavior.
    Le NNT; Zorn S; Schmitt SK; Gopalan P; Murphy WL
    Acta Biomater; 2016 Apr; 34():93-103. PubMed ID: 26386315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay between degradability and integrin signaling on mesenchymal stem cell function within poly(ethylene glycol) based microporous annealed particle hydrogels.
    Xin S; Gregory CA; Alge DL
    Acta Biomater; 2020 Jan; 101():227-236. PubMed ID: 31711899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesenchymal stem cells and ligand incorporation in biomimetic poly(ethylene glycol) hydrogels significantly improve insulin secretion from pancreatic islets.
    Bal T; Nazli C; Okcu A; Duruksu G; Karaöz E; Kizilel S
    J Tissue Eng Regen Med; 2017 Mar; 11(3):694-703. PubMed ID: 25393526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of cell-adhesive peptide ligands on poly(ethylene glycol) hydrogel physical, mechanical and transport properties.
    Zustiak SP; Durbal R; Leach JB
    Acta Biomater; 2010 Sep; 6(9):3404-14. PubMed ID: 20385260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of ethylene glycol methacrylate phosphate in PEG hydrogels on mineralization and viability of encapsulated hMSCs.
    Nuttelman CR; Benoit DS; Tripodi MC; Anseth KS
    Biomaterials; 2006 Mar; 27(8):1377-86. PubMed ID: 16139351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attachment and spatial organisation of human mesenchymal stem cells on poly(ethylene glycol) hydrogels.
    Chahal AS; Schweikle M; Heyward CA; Tiainen H
    J Mech Behav Biomed Mater; 2018 Aug; 84():46-53. PubMed ID: 29734041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An adaptable hydrogel array format for 3-dimensional cell culture and analysis.
    Jongpaiboonkit L; King WJ; Lyons GE; Paguirigan AL; Warrick JW; Beebe DJ; Murphy WL
    Biomaterials; 2008 Aug; 29(23):3346-56. PubMed ID: 18486205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of the adhesion of fibroblasts by peptide containing an Arg-Gly-Asp sequence with poly(ethylene glycol) into a thermo-reversible hydrogel as a synthetic extracellular matrix.
    Park KH; Na K; Chung HM
    Biotechnol Lett; 2005 Feb; 27(4):227-31. PubMed ID: 15742141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modifying decellularized aortic valve scaffolds with stromal cell-derived factor-1α loaded proteolytically degradable hydrogel for recellularization and remodeling.
    Dai J; Qiao W; Shi J; Liu C; Hu X; Dong N
    Acta Biomater; 2019 Apr; 88():280-292. PubMed ID: 30721783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications.
    Jia J; Coyle RC; Richards DJ; Berry CL; Barrs RW; Biggs J; James Chou C; Trusk TC; Mei Y
    Acta Biomater; 2016 Nov; 45():110-120. PubMed ID: 27612960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering.
    Zhang X; Xu B; Puperi DS; Yonezawa AL; Wu Y; Tseng H; Cuchiara ML; West JL; Grande-Allen KJ
    Acta Biomater; 2015 Mar; 14():11-21. PubMed ID: 25433168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional hMSC motility within peptide-functionalized PEG-based hydrogels of varying adhesivity and crosslinking density.
    Kyburz KA; Anseth KS
    Acta Biomater; 2013 May; 9(5):6381-92. PubMed ID: 23376239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyapatite nanoparticle injectable hydrogel scaffold to support osteogenic differentiation of human mesenchymal stem cells.
    Thorpe AA; Creasey S; Sammon C; Le Maitre CL
    Eur Cell Mater; 2016 Jul; 32():1-23. PubMed ID: 27377664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic-engineered poly (ethylene glycol) hydrogel for smooth muscle cell migration.
    Lin L; Zhu J; Kottke-Marchant K; Marchant RE
    Tissue Eng Part A; 2014 Feb; 20(3-4):864-73. PubMed ID: 24093717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Issues of ligand accessibility and mobility in initial cell attachment.
    Thid D; Bally M; Holm K; Chessari S; Tosatti S; Textor M; Gold J
    Langmuir; 2007 Nov; 23(23):11693-704. PubMed ID: 17918863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic hydrogel niches that promote hMSC viability.
    Nuttelman CR; Tripodi MC; Anseth KS
    Matrix Biol; 2005 May; 24(3):208-18. PubMed ID: 15896949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PEG hydrogel containing calcium-releasing particles and mesenchymal stromal cells promote vessel maturation.
    Navarro-Requena C; Weaver JD; Clark AY; Clift DA; Pérez-Amodio S; Castaño Ó; Zhou DW; García AJ; Engel E
    Acta Biomater; 2018 Feb; 67():53-65. PubMed ID: 29246650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.