BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 19768964)

  • 1. [Comparative analysis of the effect of endogenous antibiotic defensin NP-1 and aminoglycoside antibiotic gentamicin on synaptic transmission in receptors of the frog vestibular apparatus].
    Andrianov IuN; Nozdrachev AD; Ryzhova IV
    Izv Akad Nauk Ser Biol; 2007; (6):705-10. PubMed ID: 19768964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of defensins in the excitability of the peripheral vestibular system in the frog: evidence for the presence of communication between the immune and nervous systems.
    Andrianov GN; Nozdrachev AD; Ryzhova IV
    Hear Res; 2007 Aug; 230(1-2):1-8. PubMed ID: 17606342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopaminergic modulation of afferent synaptic transmission in the semicircular canals of frogs.
    Andrianov GN; Ryzhova IV; Tobias TV
    Neurosignals; 2009; 17(3):222-8. PubMed ID: 19546593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Absence of the effect of opioid peptides on muscarine receptors in the frog vestibular apparatus].
    Andrianov IuN; Ryzhova IV; Tobias TB
    Ross Fiziol Zh Im I M Sechenova; 2003 Nov; 89(11):1431-7. PubMed ID: 14758669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamate and carnosine in the vestibular system of the frog.
    Panzanelli P; Valli P; Cantino D; Fasolo A
    Brain Res; 1994 Oct; 662(1-2):293-6. PubMed ID: 7859088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histamine (H3) receptors modulate the excitatory amino acid receptor response of the vestibular afferents.
    Chávez H; Vega R; Soto E
    Brain Res; 2005 Dec; 1064(1-2):1-9. PubMed ID: 16310756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunocytochemical and pharmacological characterization of metabotropic glutamate receptors of the vestibular end organs in the frog.
    Andrianov GN; Puyal J; Raymond J; Ventéo S; Demêmes D; Ryzhova IV
    Hear Res; 2005 Jun; 204(1-2):200-9. PubMed ID: 15925205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opioid peptides as possible neuromodulators of the afferent synaptic transmission in the frog semicircular canal.
    Andrianov GN; Ryzhova IV
    Neuroscience; 1999; 93(2):801-6. PubMed ID: 10465463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcellular immunolocalization of NMDA receptor subunit NR1, 2A, 2B in the rat vestibular periphery.
    Ishiyama G; Lopez I; Williamson R; Acuna D; Ishiyama A
    Brain Res; 2002 May; 935(1-2):16-23. PubMed ID: 12062468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological aspects of excitatory synaptic transmission to second-order vestibular neurons in the frog.
    Cochran SL; Kasik P; Precht W
    Synapse; 1987; 1(1):102-23. PubMed ID: 2850617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presynaptic actions of cholinergic agents upon the hair cell-afferent fiber synapse in the vestibular labyrinth of the frog.
    Bernard C; Cochran SL; Precht W
    Brain Res; 1985 Jul; 338(2):225-36. PubMed ID: 2992685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gradual and reversible central vestibular reorganization in frog after selective labyrinthine nerve branch lesions.
    Goto F; Straka H; Dieringer N
    Exp Brain Res; 2002 Dec; 147(3):374-86. PubMed ID: 12428145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of 17beta-estradiol on glutamate synaptic transmission and neuronal excitability in the rat medial vestibular nuclei.
    Grassi S; Frondaroli A; Scarduzio M; Dutia MB; Dieni C; Pettorossi VE
    Neuroscience; 2010 Feb; 165(4):1100-14. PubMed ID: 19944747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic resonance in the synaptic transmission between hair cells and vestibular primary afferents in development.
    Flores A; Manilla S; Huidobro N; De la Torre-Valdovinos B; Kristeva R; Mendez-Balbuena I; Galindo F; Treviño M; Manjarrez E
    Neuroscience; 2016 May; 322():416-29. PubMed ID: 26926966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential inhibitory control of semicircular canal nerve afferent-evoked inputs in second-order vestibular neurons by glycinergic and GABAergic circuits.
    Biesdorf S; Malinvaud D; Reichenberger I; Pfanzelt S; Straka H
    J Neurophysiol; 2008 Apr; 99(4):1758-69. PubMed ID: 18256163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal discrimination in the semicircular canals: a role for group I metabotropic glutamate receptors.
    Hendricson AW; Guth PS
    Neuroreport; 2002 Oct; 13(14):1765-8. PubMed ID: 12395119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gentamicin induced nitric oxide-related oxidative damages on vestibular afferents in the guinea pig.
    Hong SH; Park SK; Cho YS; Lee HS; Kim KR; Kim MG; Chung WH
    Hear Res; 2006 Jan; 211(1-2):46-53. PubMed ID: 16289993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AMPA type glutamate receptor mediates neurotransmission at turtle vestibular calyx synapse.
    Bonsacquet J; Brugeaud A; Compan V; Desmadryl G; Chabbert C
    J Physiol; 2006 Oct; 576(Pt 1):63-71. PubMed ID: 16887871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for L-glutamate release in frog vestibular organs.
    Zucca G; Botta L; Milesi V; Dagani F; Valli P
    Hear Res; 1992 Nov; 63(1-2):52-6. PubMed ID: 1361183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptophysin immunohistochemistry during vestibular hair cell recovery after gentamicin treatment.
    Lopez I; Ayala C; Honrubia V
    Audiol Neurootol; 2003; 8(2):80-90. PubMed ID: 12634456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.