These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 19769526)
1. Bioprinted nanoparticles for tissue engineering applications. Buyukhatipoglu K; Chang R; Sun W; Clyne AM Tissue Eng Part C Methods; 2010 Aug; 16(4):631-42. PubMed ID: 19769526 [TBL] [Abstract][Full Text] [Related]
2. The role of printing parameters and scaffold biopolymer properties in the efficacy of a new hybrid nano-bioprinting system. Buyukhatipoglu K; Jo W; Sun W; Clyne AM Biofabrication; 2009 Sep; 1(3):035003. PubMed ID: 20811107 [TBL] [Abstract][Full Text] [Related]
3. Bioprinting endothelial cells with alginate for 3D tissue constructs. Khalil S; Sun W J Biomech Eng; 2009 Nov; 131(11):111002. PubMed ID: 20353253 [TBL] [Abstract][Full Text] [Related]
4. PAM2 (piston assisted microsyringe): a new rapid prototyping technique for biofabrication of cell incorporated scaffolds. Tirella A; Vozzi F; Vozzi G; Ahluwalia A Tissue Eng Part C Methods; 2011 Feb; 17(2):229-37. PubMed ID: 20799910 [TBL] [Abstract][Full Text] [Related]
5. Hydro-spinning: a novel technology for making alginate/chitosan fibrous scaffold. Wang JZ; Huang XB; Xiao J; Yu WT; Wang W; Xie WY; Zhang Y; Ma XJ J Biomed Mater Res A; 2010 Jun; 93(3):910-9. PubMed ID: 19705468 [TBL] [Abstract][Full Text] [Related]
6. Developing an alginate/chitosan hybrid fiber scaffold for annulus fibrosus cells. Shao X; Hunter CJ J Biomed Mater Res A; 2007 Sep; 82(3):701-10. PubMed ID: 17326226 [TBL] [Abstract][Full Text] [Related]
7. Sodium alginate hydrogel-based bioprinting using a novel multinozzle bioprinting system. Song SJ; Choi J; Park YD; Hong S; Lee JJ; Ahn CB; Choi H; Sun K Artif Organs; 2011 Nov; 35(11):1132-6. PubMed ID: 22097985 [TBL] [Abstract][Full Text] [Related]
8. Bioprinting Pattern-Dependent Electrical/Mechanical Behavior of Cardiac Alginate Implants: Characterization and Ex Vivo Phase-Contrast Microtomography Assessment. Izadifar M; Babyn P; Kelly ME; Chapman D; Chen X Tissue Eng Part C Methods; 2017 Sep; 23(9):548-564. PubMed ID: 28726575 [TBL] [Abstract][Full Text] [Related]
9. Organ weaving: woven threads and sheets as a step towards a new strategy for artificial organ development. Liberski AR; Delaney JT; Schäfer H; Perelaer J; Schubert US Macromol Biosci; 2011 Nov; 11(11):1491-8. PubMed ID: 21916011 [TBL] [Abstract][Full Text] [Related]
10. Magnetic targeting after femoral artery administration and biocompatibility assessment of superparamagnetic iron oxide nanoparticles. Ma HL; Qi XR; Ding WX; Maitani Y; Nagai T J Biomed Mater Res A; 2008 Mar; 84(3):598-606. PubMed ID: 17618488 [TBL] [Abstract][Full Text] [Related]
11. Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass. Keshaw H; Forbes A; Day RM Biomaterials; 2005 Jul; 26(19):4171-9. PubMed ID: 15664644 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing. Castilho M; Rodrigues J; Pires I; Gouveia B; Pereira M; Moseke C; Groll J; Ewald A; Vorndran E Biofabrication; 2015 Jan; 7(1):015004. PubMed ID: 25562119 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the flow behavior of alginate/hydroxyapatite mixtures for tissue scaffold fabrication. Tian XY; Li MG; Cao N; Li JW; Chen XB Biofabrication; 2009 Dec; 1(4):045005. PubMed ID: 20811114 [TBL] [Abstract][Full Text] [Related]
14. Magnetically actuated alginate scaffold: a novel platform for promoting tissue organization and vascularization. Sapir Y; Ruvinov E; Polyak B; Cohen S Methods Mol Biol; 2014; 1181():83-95. PubMed ID: 25070329 [TBL] [Abstract][Full Text] [Related]
15. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology. Nishiyama Y; Nakamura M; Henmi C; Yamaguchi K; Mochizuki S; Nakagawa H; Takiura K J Biomech Eng; 2009 Mar; 131(3):035001. PubMed ID: 19154078 [TBL] [Abstract][Full Text] [Related]
16. Cells (MC3T3-E1)-laden alginate scaffolds fabricated by a modified solid-freeform fabrication process supplemented with an aerosol spraying. Ahn S; Lee H; Bonassar LJ; Kim G Biomacromolecules; 2012 Sep; 13(9):2997-3003. PubMed ID: 22913233 [TBL] [Abstract][Full Text] [Related]
17. Formation of an aggregated alginate construct in a tubular perfusion system. Yeatts AB; Gordon CN; Fisher JP Tissue Eng Part C Methods; 2011 Dec; 17(12):1171-8. PubMed ID: 21895493 [TBL] [Abstract][Full Text] [Related]
18. A novel alginate hollow fiber bioreactor process for cellular therapy applications. Hoesli CA; Luu M; Piret JM Biotechnol Prog; 2009; 25(6):1740-51. PubMed ID: 19768776 [TBL] [Abstract][Full Text] [Related]
19. Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Nakamura M; Iwanaga S; Henmi C; Arai K; Nishiyama Y Biofabrication; 2010 Mar; 2(1):014110. PubMed ID: 20811125 [TBL] [Abstract][Full Text] [Related]
20. An ice-templated, linearly aligned chitosan-alginate scaffold for neural tissue engineering. Francis NL; Hunger PM; Donius AE; Riblett BW; Zavaliangos A; Wegst UG; Wheatley MA J Biomed Mater Res A; 2013 Dec; 101(12):3493-503. PubMed ID: 23596011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]