BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 19769637)

  • 1. Potassium-transporting proteins in skeletal muscle: cellular location and fibre-type differences.
    Kristensen M; Juel C
    Acta Physiol (Oxf); 2010 Feb; 198(2):105-23. PubMed ID: 19769637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-dependent antagonist/agonist actions of taurine on Ca(2+)-activated potassium channels of rat skeletal muscle fibers.
    Tricarico D; Barbieri M; Conte Camerino D
    J Pharmacol Exp Ther; 2001 Sep; 298(3):1167-71. PubMed ID: 11504816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Na+/K(+)-pump protects muscle excitability and contractility during exercise.
    Nielsen OB; Clausen T
    Exerc Sport Sci Rev; 2000 Oct; 28(4):159-64. PubMed ID: 11064849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane proteins involved in potassium shifts during muscle activity and fatigue.
    Kristensen M; Hansen T; Juel C
    Am J Physiol Regul Integr Comp Physiol; 2006 Mar; 290(3):R766-72. PubMed ID: 16223848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise.
    Sejersted OM; Sjøgaard G
    Physiol Rev; 2000 Oct; 80(4):1411-81. PubMed ID: 11015618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of intracellular and extracellular ion changes on E-C coupling and skeletal muscle fatigue.
    Fitts RH; Balog EM
    Acta Physiol Scand; 1996 Mar; 156(3):169-81. PubMed ID: 8729677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle K+, Na+, and Cl disturbances and Na+-K+ pump inactivation: implications for fatigue.
    McKenna MJ; Bangsbo J; Renaud JM
    J Appl Physiol (1985); 2008 Jan; 104(1):288-95. PubMed ID: 17962569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle mechanics: adaptations with exercise-training.
    Fitts RH; Widrick JJ
    Exerc Sport Sci Rev; 1996; 24():427-73. PubMed ID: 8744258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular acidosis enhances the excitability of working muscle.
    Pedersen TH; Nielsen OB; Lamb GD; Stephenson DG
    Science; 2004 Aug; 305(5687):1144-7. PubMed ID: 15326352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of 8 wk of voluntary unloaded wheel running on K+ tolerance and excitability of soleus muscles in rat.
    Broch-Lips M; de Paoli F; Pedersen TH; Overgaard K; Nielsen OB
    J Appl Physiol (1985); 2011 Jul; 111(1):212-20. PubMed ID: 21551010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage-gated potassium conductances in Gymnotus electrocytes(AB).
    Sierra F; Comas V; Buño W; Macadar O
    Neuroscience; 2007 Mar; 145(2):453-63. PubMed ID: 17222982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na,K-ATPase alpha- and beta-isoform expression in developing skeletal muscles: alpha(2) correlates with t-tubule formation.
    Cougnon MH; Moseley AE; Radzyukevich TL; Lingrel JB; Heiny JA
    Pflugers Arch; 2002 Oct; 445(1):123-31. PubMed ID: 12397396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Na,K pumps in restoring contractility following loss of cell membrane integrity in rat skeletal muscle.
    Clausen T; Gissel H
    Acta Physiol Scand; 2005 Mar; 183(3):263-71. PubMed ID: 15743386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationships between plasma potassium, muscle excitability and fatigue during voluntary exercise in humans.
    Shushakov V; Stubbe C; Peuckert A; Endeward V; Maassen N
    Exp Physiol; 2007 Jul; 92(4):705-15. PubMed ID: 17434915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-frequency fatigue in rat skeletal muscle: role of extracellular ion concentrations.
    Cairns SP; Dulhunty AF
    Muscle Nerve; 1995 Aug; 18(8):890-8. PubMed ID: 7630351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane excitability and excitation-contraction uncoupling in muscle fatigue.
    Fauler M; Jurkat-Rott K; Lehmann-Horn F
    Neuromuscul Disord; 2012 Dec; 22 Suppl 3():S162-7. PubMed ID: 23182632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inotropic effects of the K+ channel blocker 3,4-diaminopyridine on fatigued diaphragm muscle.
    Ionno M; Moyer M; Pollarine J; van Lunteren E
    Respir Physiol Neurobiol; 2008 Jan; 160(1):45-53. PubMed ID: 17881299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of extracellular HCO3(-) on fatigue, pHi, and K+ efflux in rat skeletal muscles.
    Broch-Lips M; Overgaard K; Praetorius HA; Nielsen OB
    J Appl Physiol (1985); 2007 Aug; 103(2):494-503. PubMed ID: 17446415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na,K-ATPase α2 activity in mammalian skeletal muscle T-tubules is acutely stimulated by extracellular K+.
    DiFranco M; Hakimjavadi H; Lingrel JB; Heiny JA
    J Gen Physiol; 2015 Oct; 146(4):281-94. PubMed ID: 26371210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle.
    Nielsen JJ; Mohr M; Klarskov C; Kristensen M; Krustrup P; Juel C; Bangsbo J
    J Physiol; 2004 Feb; 554(Pt 3):857-70. PubMed ID: 14634198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.