BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 19769776)

  • 1. A new transcutaneous energy transmission system with hybrid energy coils for driving an implantable biventricular assist device.
    Okamoto E; Yamamoto Y; Akasaka Y; Motomura T; Mitamura Y; Nosé Y
    Artif Organs; 2009 Aug; 33(8):622-6. PubMed ID: 19769776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an autotuned transcutaneous energy transfer system.
    Miller JA; Bélanger G; Mussivand T
    ASAIO J; 1993; 39(3):M706-10. PubMed ID: 8268629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement in magnetic field immunity of externally-coupled transcutaneous energy transmission system for a totally implantable artificial heart.
    Yamamoto T; Koshiji K; Homma A; Tatsumi E; Taenaka Y
    J Artif Organs; 2008; 11(4):238-40. PubMed ID: 19184291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary study of a new type of energy transmission system for artificial hearts.
    Ozeki T; Chinzei T; Abe Y; Saito I; Isoyama T; Ono T; Kouno A; Ishimaru M; Mochizuki S; Takiura K; Baba A; Toyama T; Imachi K
    J Artif Organs; 2003; 6(1):14-9. PubMed ID: 14598119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an implantable motor-driven assist pump system.
    Mitamura Y; Okamoto E; Hirano A; Mikami T
    IEEE Trans Biomed Eng; 1990 Feb; 37(2):146-56. PubMed ID: 2312139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel low temperature transcutaneous energy transfer system suitable for high power implantable medical devices: performance and validation in sheep.
    Dissanayake TD; Budgett DM; Hu P; Bennet L; Pyner S; Booth L; Amirapu S; Wu Y; Malpas SC
    Artif Organs; 2010 May; 34(5):E160-7. PubMed ID: 20633146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo performance evaluation of a transcutaneous energy and information transmission system for the total artificial heart.
    Ahn JM; Kang DW; Kim HC; Min BG
    ASAIO J; 1993; 39(3):M208-12. PubMed ID: 8268530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ten-year NEDO BVAD development program: moving forward to the clinical arena.
    Motomura T; Okubo H; Oda T; Ogawa D; Okahisa T; Igo S; Shinohara T; Yamamoto Y; Noguchi C; Ishizuka T; Okamoto E; Nosé Y
    ASAIO J; 2006; 52(4):378-85. PubMed ID: 16883116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current status of the gyro centrifugal blood pump--development of the permanently implantable centrifugal blood pump as a biventricular assist device (NEDO project).
    Nosé Y; Furukawa K
    Artif Organs; 2004 Oct; 28(10):953-8. PubMed ID: 15385004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Totally implantable intrathoracic ventricular assist device.
    Mussivand TV; Masters RG; Hendry PJ; Keon WJ
    Ann Thorac Surg; 1996 Jan; 61(1):444-7. PubMed ID: 8561623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of integrated electronics unit for drive and control of undulation pump-left ventricular assist device.
    Okamoto E; Makino T; Inoue Y; Tanaka S; Yasuda T; Nakamura M; Saito I; Abe Y; Chinzei T; Isoyama T; Mochiizuki S; Imachi K; Mitamura Y
    Artif Organs; 2006 May; 30(5):403-5. PubMed ID: 16683960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcutaneous energy transfer with voltage regulation for rotary blood pumps.
    Mussivand T; Holmes KS; Hum A; Keon WJ
    Artif Organs; 1996 Jun; 20(6):621-4. PubMed ID: 8817967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functions for detecting malposition of transcutaneous energy transmission coils.
    Ozeki T; Chinzei T; Abe Y; Saito I; Isoyama T; Mochizuki S; Ishimaru M; Takiura K; Baba A; Toyama T; Imachi K
    ASAIO J; 2003; 49(4):469-74. PubMed ID: 12918593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal evaluation of a hermetic transcutaneous energy transfer system to power mechanical circulatory support devices in destination therapy.
    Au SLC; McCormick D; Lever N; Budgett D
    Artif Organs; 2020 Sep; 44(9):955-967. PubMed ID: 32133654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current status on the development of a totally implantable biventricular assist device: the Baylor Gyro BVAD.
    Linneweber J; Nonaka K; Ichikawa S; Ishitoya H; Motomura T; Nosé Y
    Thorac Cardiovasc Surg; 2004 Feb; 52(1):1-5. PubMed ID: 15002068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.
    Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y
    Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intelligent Li ion battery management based on a digital signal processor for a moving actuator total artificial heart.
    Kim WE; Ahn JM; Choi SW; Min BG
    ASAIO J; 1997; 43(5):M588-92. PubMed ID: 9360113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-power hybrid wireless network for monitoring infant incubators.
    Shin DI; Shin KH; Kim IK; Park KS; Lee TS; Kim SI; Lim KS; Huh SJ
    Med Eng Phys; 2005 Oct; 27(8):713-6. PubMed ID: 16139769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Totally implantable robot to treat chronic atrial fibrillation.
    Tozzi P; Hayoz D; Thévenaz P; Roulet JY; Salchli F; von Segesser LK
    Bioinspir Biomim; 2008 Sep; 3(3):035009. PubMed ID: 18667758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and evaluation of totally implantable ventricular assist system using a vibrating flow pump and transcutaneous energy transmission system with amorphous fibers.
    Yambe T; Hashimoto H; Kobayashi S; Sonobe T; Naganuma S; Nanka SS; Matsuki H; Yoshizawa M; Tabayashi K; Takayasu H; Takeda H; Nitta S
    Heart Vessels; 1997; Suppl 12():41-3. PubMed ID: 9476541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.