These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19770038)

  • 1. Temperature-dependent proteolysis as a control element in Escherichia coli metabolism.
    Katz C; Rasouly A; Gur E; Shenhar Y; Biran D; Ron EZ
    Res Microbiol; 2009 Nov; 160(9):684-6. PubMed ID: 19770038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation of Escherichi coli to elevated temperatures involves a change in stability of heat shock gene transcripts.
    Shenhar Y; Rasouly A; Biran D; Ron EZ
    Environ Microbiol; 2009 Dec; 11(12):2989-97. PubMed ID: 19624711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Region C of the Escherichia coli heat shock sigma factor RpoH (sigma 32) contains a turnover element for proteolysis by the FtsH protease.
    Obrist M; Langklotz S; Milek S; Führer F; Narberhaus F
    FEMS Microbiol Lett; 2009 Jan; 290(2):199-208. PubMed ID: 19025566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stress responses to heterologous membrane protein expression in Escherichia coli.
    Xu LY; Link AJ
    Biotechnol Lett; 2009 Nov; 31(11):1775-82. PubMed ID: 19588252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteolysis of sigmaS (RpoS) and the general stress response in Escherichia coli.
    Hengge R
    Res Microbiol; 2009 Nov; 160(9):667-76. PubMed ID: 19765651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Requirement for the acetyl phosphate pathway in Escherichia coli ATP-dependent proteolysis.
    Mizrahi I; Biran D; Ron EZ
    Mol Microbiol; 2006 Oct; 62(1):201-11. PubMed ID: 16987178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tools for the study of protein quality control systems: use of truncated homoserine trans-succinylase as a model substrate for ATP-dependent proteolysis in Escherichia coli.
    Mizrahi I; Biran D; Gur E; Ron EZ
    J Microbiol Methods; 2007 Jul; 70(1):82-5. PubMed ID: 17490766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gut myoelectrical activity induces heat shock response in Escherichia coli and Caco-2 cells.
    Laubitz D; Jankowska A; Sikora A; Woliński J; Zabielski R; Grzesiuk E
    Exp Physiol; 2006 Sep; 91(5):867-75. PubMed ID: 16728456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the Escherichia coli sigma-dependent envelope stress response.
    Alba BM; Gross CA
    Mol Microbiol; 2004 May; 52(3):613-9. PubMed ID: 15101969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic interplay between antagonistic pathways controlling the sigma 32 level in Escherichia coli.
    Morita MT; Kanemori M; Yanagi H; Yura T
    Proc Natl Acad Sci U S A; 2000 May; 97(11):5860-5. PubMed ID: 10801971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of heating rate on Escherichia coli metabolism, physiological stress, transcriptional response, and production of temperature-induced recombinant protein: a scale-down study.
    Caspeta L; Flores N; Pérez NO; Bolívar F; Ramírez OT
    Biotechnol Bioeng; 2009 Feb; 102(2):468-82. PubMed ID: 18767190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent insights into the general stress response regulatory network in Escherichia coli.
    Hengge-Aronis R
    J Mol Microbiol Biotechnol; 2002 May; 4(3):341-6. PubMed ID: 11931567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Genetic regulation of the heat-shock response in Escherichia coli].
    Ramírez Santos J; Solís Guzmán G; Gómez Eichelmann MC
    Rev Latinoam Microbiol; 2001; 43(1):51-63. PubMed ID: 17061571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An online monitoring system based on a synthetic sigma32-dependent tandem promoter for visualization of insoluble proteins in the cytoplasm of Escherichia coli.
    Kraft M; Knüpfer U; Wenderoth R; Pietschmann P; Hock B; Horn U
    Appl Microbiol Biotechnol; 2007 May; 75(2):397-406. PubMed ID: 17221192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel interaction between the major bacterial heat shock chaperone (GroESL) and an RNA chaperone (CspC).
    Lenz G; Ron EZ
    J Mol Biol; 2014 Jan; 426(2):460-6. PubMed ID: 24148697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription of the ibpB heat-shock gene is under control of sigma(32)- and sigma(54)-promoters, a third regulon of heat-shock response.
    Kuczyńska-Wisńik D; Laskowska E; Taylor A
    Biochem Biophys Res Commun; 2001 Jun; 284(1):57-64. PubMed ID: 11374870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of environmental stresses on the activities of the uspA, grpE and rpoS promoters of Escherichia coli O157:H7.
    Gawande PV; Griffiths MW
    Int J Food Microbiol; 2005 Mar; 99(1):91-8. PubMed ID: 15718032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct CIII-HflB interaction is responsible for the inhibition of the HflB (FtsH)-mediated proteolysis of Escherichia coli sigma(32) by lambdaCIII.
    Halder S; Banerjee S; Parrack P
    FEBS J; 2008 Oct; 275(19):4767-72. PubMed ID: 18721134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32.
    Gamer J; Multhaup G; Tomoyasu T; McCarty JS; Rüdiger S; Schönfeld HJ; Schirra C; Bujard H; Bukau B
    EMBO J; 1996 Feb; 15(3):607-17. PubMed ID: 8599944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional response of Escherichia coli to temperature shift.
    Gadgil M; Kapur V; Hu WS
    Biotechnol Prog; 2005; 21(3):689-99. PubMed ID: 15932244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.