BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 19770081)

  • 1. Likeness-based detection of sleep slow oscillations in normal and altered sleep conditions: application on low-density EEG recordings.
    Piarulli A; Menicucci D; Gemignani A; Olcese U; d'Ascanio P; Pingitore A; Bedini R; Landi A
    IEEE Trans Biomed Eng; 2010 Feb; 57(2):363-72. PubMed ID: 19770081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic performance evaluation of a continuous-scale sleep depth measure.
    Saastamoinen A; Huupponen E; Värri A; Hasan J; Himanen SL
    Med Eng Phys; 2007 Dec; 29(10):1119-31. PubMed ID: 17169597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic detection of K-complexes: validation in normals and dysthymic patients.
    da Rosa AC; Paiva T
    Sleep; 1993 Apr; 16(3):239-48. PubMed ID: 8506457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inter-rater reliability of sleep cyclic alternating pattern (CAP) scoring and validation of a new computer-assisted CAP scoring method.
    Ferri R; Bruni O; Miano S; Smerieri A; Spruyt K; Terzano MG
    Clin Neurophysiol; 2005 Mar; 116(3):696-707. PubMed ID: 15721084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between EEG rhythms during sleep: surface versus mediotemporal EEG.
    Poepel A; Helmstaedter C; Kockelmann E; Axmacher N; Burr W; Elger CE; Fell J
    Neuroreport; 2007 May; 18(8):837-40. PubMed ID: 17471077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new quantitative automatic method for the measurement of non-rapid eye movement sleep electroencephalographic amplitude variability.
    Ferri R; Rundo F; Novelli L; Terzano MG; Parrino L; Bruni O
    J Sleep Res; 2012 Apr; 21(2):212-20. PubMed ID: 22084833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of electroencephalographic arousals in multichannel sleep recordings.
    Alvarez-Estévez D; Moret-Bonillo V
    IEEE Trans Biomed Eng; 2011 Jan; 58(1):54-63. PubMed ID: 20840892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of two-channel electro-oculography in automatic detection of unintentional sleep onset.
    Virkkala J; Hasan J; Värri A; Himanen SL; Härmä M
    J Neurosci Methods; 2007 Jun; 163(1):137-44. PubMed ID: 17376536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic sleep stage classification using two-channel electro-oculography.
    Virkkala J; Hasan J; Värri A; Himanen SL; Müller K
    J Neurosci Methods; 2007 Oct; 166(1):109-15. PubMed ID: 17681382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatio-temporal analysis of monofractal and multifractal properties of the human sleep EEG.
    Weiss B; Clemens Z; Bódizs R; Vágó Z; Halász P
    J Neurosci Methods; 2009 Dec; 185(1):116-24. PubMed ID: 19646476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle artifact removal from human sleep EEG by using independent component analysis.
    Crespo-Garcia M; Atienza M; Cantero JL
    Ann Biomed Eng; 2008 Mar; 36(3):467-75. PubMed ID: 18228142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method for quantification and assessment of epileptiform activity in EEG with special reference to focal nocturnal epileptiform activity.
    Larsson PG; Wilson J; Eeg-Olofsson O
    Brain Topogr; 2009 Jun; 22(1):52-9. PubMed ID: 19005748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of cortical slow waves in the sleep EEG using a modified matching pursuit method with a restricted dictionary.
    Picot A; Whitmore H; Chapotot F
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2808-17. PubMed ID: 22868527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic detection of transient EEG events during sleep can be improved using a multi-channel approach.
    Saccomandi F; Priano L; Mauro A; Nerino R; Guiot C
    Clin Neurophysiol; 2008 Apr; 119(4):959-67. PubMed ID: 18282740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multichannel matching pursuit and EEG inverse solutions.
    Durka PJ; Matysiak A; Montes EM; Sosa PV; Blinowska KJ
    J Neurosci Methods; 2005 Oct; 148(1):49-59. PubMed ID: 15908012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multivariate analysis of full-term neonatal polysomnographic data.
    Gerla V; Paul K; Lhotska L; Krajca V
    IEEE Trans Inf Technol Biomed; 2009 Jan; 13(1):104-10. PubMed ID: 19129029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: a simulation case.
    Romero S; Mañanas MA; Barbanoj MJ
    Comput Biol Med; 2008 Mar; 38(3):348-60. PubMed ID: 18222418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated sleep-spindle detection in healthy children polysomnograms.
    Causa L; Held CM; Causa J; Estévez PA; Perez CA; Chamorro R; Garrido M; Algarín C; Peirano P
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2135-46. PubMed ID: 20550978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trends in electroencephalographic synchronization across nonrapid eye movement sleep in infants.
    Bes F; Fagioli I; Peirano P; Schulz H; Salzarulo P
    Sleep; 1994 Jun; 17(4):323-8. PubMed ID: 7973315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional MRI during sleep: BOLD signal decreases and their electrophysiological correlates.
    Czisch M; Wehrle R; Kaufmann C; Wetter TC; Holsboer F; Pollmächer T; Auer DP
    Eur J Neurosci; 2004 Jul; 20(2):566-74. PubMed ID: 15233766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.