These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 19770087)

  • 1. Properties of the stimulus router system, a novel neural prosthesis.
    Gan LS; Prochazka A
    IEEE Trans Biomed Eng; 2010 Feb; 57(2):450-9. PubMed ID: 19770087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new means of transcutaneous coupling for neural prostheses.
    Gan LS; Prochazka A; Bornes TD; Denington AA; Chan KM
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):509-17. PubMed ID: 17355064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First permanent implant of nerve stimulation leads activated by surface electrodes, enabling hand grasp and release: the stimulus router neuroprosthesis.
    Gan LS; Ravid E; Kowalczewski JA; Olson JL; Morhart M; Prochazka A
    Neurorehabil Neural Repair; 2012 May; 26(4):335-43. PubMed ID: 21959674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic measurement of the stimulation selectivity of the flat interface nerve electrode.
    Leventhal DK; Durand DM
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1649-58. PubMed ID: 15376513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First permanent human implant of the Stimulus Router System, a novel neuroprosthesis: preliminary testing of a polarity reversing stimulation technique.
    Gan LS; Ravid EN; Kowalczewski J; Gauthier M; Olson J; Morhart M; Prochazka A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3051-4. PubMed ID: 22254983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The value of continuous electrical muscle stimulation using a completely implantable system in the preservation of muscle function following motor nerve injury and repair: an experimental study.
    Williams HB
    Microsurgery; 1996; 17(11):589-96. PubMed ID: 9514517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Instrumentation for ENG and EMG recordings in FES systems.
    Nikolić ZM; Popović DB; Stein RB; Kenwell Z
    IEEE Trans Biomed Eng; 1994 Jul; 41(7):703-6. PubMed ID: 7927392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implantable microscale neural interfaces.
    Cheung KC
    Biomed Microdevices; 2007 Dec; 9(6):923-38. PubMed ID: 17252207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionally selective peripheral nerve stimulation with a flat interface nerve electrode.
    Tyler DJ; Durand DM
    IEEE Trans Neural Syst Rehabil Eng; 2002 Dec; 10(4):294-303. PubMed ID: 12611367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated stimulus-response mapping of high-electrode-count neural implants.
    Wilder AM; Hiatt SD; Dowden BR; Brown NA; Normann RA; Clark GA
    IEEE Trans Neural Syst Rehabil Eng; 2009 Oct; 17(5):504-11. PubMed ID: 19666339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle recruitment with intrafascicular electrodes.
    Nannini N; Horch K
    IEEE Trans Biomed Eng; 1991 Aug; 38(8):769-76. PubMed ID: 1937510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective fascicular stimulation of the rat sciatic nerve with multipolar polyimide cuff electrodes.
    Navarro X; Valderrama E; Stieglitz T; Schüttler M
    Restor Neurol Neurosci; 2001; 18(1):9-21. PubMed ID: 11673666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interleaved, multisite electrical stimulation of cat sciatic nerve produces fatigue-resistant, ripple-free motor responses.
    McDonnall D; Clark GA; Normann RA
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):208-15. PubMed ID: 15218935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transverse versus longitudinal tripolar configuration for selective stimulation with multipolar cuff electrodes.
    Nielsen TN; Kurstjens GA; Struijk JJ
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):913-9. PubMed ID: 21421427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An implantable electrical interface for in vivo studies of the neuromuscular system.
    Koh TJ; Leonard TR
    J Neurosci Methods; 1996 Dec; 70(1):27-32. PubMed ID: 8982978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micromodular implants to provide electrical stimulation of paralyzed muscles and limbs.
    Cameron T; Loeb GE; Peck RA; Schulman JH; Strojnik P; Troyk PR
    IEEE Trans Biomed Eng; 1997 Sep; 44(9):781-90. PubMed ID: 9282470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical properties of retinal-electrode interface.
    Shah S; Hines A; Zhou D; Greenberg RJ; Humayun MS; Weiland JD
    J Neural Eng; 2007 Mar; 4(1):S24-9. PubMed ID: 17325413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraspinal microstimulation using cylindrical multielectrodes.
    Snow S; Horch KW; Mushahwar VK
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):311-9. PubMed ID: 16485760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-invasive method for selection of electrodes and stimulus parameters for FES applications with intrafascicular arrays.
    Dowden BR; Frankel MA; Normann RA; Clark GA
    J Neural Eng; 2012 Feb; 9(1):016006. PubMed ID: 22173566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear summation of torque produced by selective activation of two motor fascicles.
    Tarler MD; Mortimer JT
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):104-10. PubMed ID: 17436882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.