These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 19770142)

  • 1. Enhancement of electrical bistability through semiconducting nanoparticles for organic memory applications.
    Das BC; Pal AJ
    Philos Trans A Math Phys Eng Sci; 2009 Oct; 367(1905):4181-90. PubMed ID: 19770142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Core-shell hybrid nanoparticles with functionalized quantum dots and ionic dyes: growth, monolayer formation, and electrical bistability.
    Das BC; Pal AJ
    ACS Nano; 2008 Sep; 2(9):1930-8. PubMed ID: 19206434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical bistability in electrostatic assemblies of CdSe nanoparticles.
    Mohanta K; Majee SK; Batabyal SK; Pal AJ
    J Phys Chem B; 2006 Sep; 110(37):18231-5. PubMed ID: 16970440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonvolatile flexible organic bistable devices fabricated utilizing CdSe/ZnS nanoparticles embedded in a conducting poly N-vinylcarbazole polymer layer.
    Son DI; Kim JH; Park DH; Choi WK; Li F; Ham JH; Kim TW
    Nanotechnology; 2008 Feb; 19(5):055204. PubMed ID: 21817602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical bistability in a composite of polymer and barium titanate nanoparticles.
    Salaoru I; Paul S
    Philos Trans A Math Phys Eng Sci; 2009 Oct; 367(1905):4227-34. PubMed ID: 19770146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical bistability in zinc oxide nanoparticle-polymer composites.
    Pradhan B; Majee SK; Batabyal SK; Pal AJ
    J Nanosci Nanotechnol; 2007 Dec; 7(12):4534-9. PubMed ID: 18283839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A modular nanoparticle-based system for reagentless small molecule biosensing.
    Sandros MG; Gao D; Benson DE
    J Am Chem Soc; 2005 Sep; 127(35):12198-9. PubMed ID: 16131178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conductance switching in an organic material: from bulk to monolayer.
    Rath AK; Pal AJ
    Langmuir; 2007 Sep; 23(19):9831-5. PubMed ID: 17696370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanowires of metal-organic complex by photocrystallization: a system to achieve addressable electrically bistable devices and memory elements.
    Rath AK; Dhara K; Banerjee P; Pal AJ
    Langmuir; 2008 Jun; 24(11):5937-41. PubMed ID: 18452322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Memory applications and electrical bistability of semiconducting nanoparticles: do the phenomena depend on bandgap?
    Das BC; Pal AJ
    Small; 2008 May; 4(5):542-7. PubMed ID: 18421723
    [No Abstract]   [Full Text] [Related]  

  • 11. The temperature-dependent physical and electrical characteristics of a polymer/RAFT-polymer stabilized nanoparticle system for organic nonvolatile memory.
    Chen JR; Lin HT; Hwang GW; Chan YJ; Li PW
    Nanotechnology; 2009 Jun; 20(25):255706. PubMed ID: 19491462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical bistability and memory phenomenon in carbon nanotube-conjugated polymer matrixes.
    Pradhan B; Batabyal SK; Pal AJ
    J Phys Chem B; 2006 Apr; 110(16):8274-7. PubMed ID: 16623507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric bistability in pentacene film-based transistor embedding gold nanoparticles.
    Tseng CW; Tao YT
    J Am Chem Soc; 2009 Sep; 131(34):12441-50. PubMed ID: 19655797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The steric effect of aromatic pendant groups and electrical bistability in π-stacked polymers for memory devices.
    Zhang B; Chen Y; Zhang Y; Chen X; Chi Z; Yang J; Ou J; Zhang MQ; Li D; Wang D; Liu M; Zhou J
    Phys Chem Chem Phys; 2012 Apr; 14(13):4640-50. PubMed ID: 22370967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer.
    Son DI; Park DH; Choi WK; Cho SH; Kim WT; Kim TW
    Nanotechnology; 2009 May; 20(19):195203. PubMed ID: 19420634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes.
    Capek I
    Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticle bridges for studying electrical properties of organic molecules.
    Leifer K; Welch K; Jafri SH; Blom T
    Methods Mol Biol; 2012; 906():535-46. PubMed ID: 22791462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single active-layer structured dual-function devices using hybrid polymer-quantum dots.
    Son DI; Park DH; Ie SY; Choi WK; Choi JW; Li F; Kim TW
    Nanotechnology; 2008 Oct; 19(39):395201. PubMed ID: 21832586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecularly mediated thin film assembly of nanoparticles on flexible devices: electrical conductivity versus device strains in different gas/vapor environment.
    Yin J; Hu P; Luo J; Wang L; Cohen MF; Zhong CJ
    ACS Nano; 2011 Aug; 5(8):6516-26. PubMed ID: 21809822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light harvesting and energy transfer in multiporphyrin-modified CdSe nanoparticles.
    Kang S; Yasuda M; Miyasaka H; Hayashi H; Kawasaki M; Umeyama T; Matano Y; Yoshida K; Isoda S; Imahori H
    ChemSusChem; 2008; 1(3):254-61. PubMed ID: 18605215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.