These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 19770852)

  • 1. High-flux and broadband biphoton sources with controlled frequency entanglement.
    Shimizu R; Edamatsu K
    Opt Express; 2009 Sep; 17(19):16385-93. PubMed ID: 19770852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bright source of polarization-entangled photons using a PPKTP pumped by a broadband multi-mode diode laser.
    Jeong YC; Hong KH; Kim YH
    Opt Express; 2016 Jan; 24(2):1165-74. PubMed ID: 26832500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer.
    Li Y; Zhou ZY; Ding DS; Shi BS
    Opt Express; 2015 Nov; 23(22):28792-800. PubMed ID: 26561148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum-correlated two-photon transitions to excitons in semiconductor quantum wells.
    Salazar LJ; Guzmán DA; Rodríguez FJ; Quiroga L
    Opt Express; 2012 Feb; 20(4):4470-83. PubMed ID: 22418206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of polarization mode dispersion on polarization-entangled photons generated via broadband pumped spontaneous parametric down-conversion.
    Lim HT; Hong KH; Kim YH
    Sci Rep; 2016 May; 6():25846. PubMed ID: 27174100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing type-I polarization-entangled photons.
    Rangarajan R; Goggin M; Kwiat P
    Opt Express; 2009 Oct; 17(21):18920-33. PubMed ID: 20372627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fiber-based frequency-degenerate polarization entangled photon pair sources for information encoding.
    Zhu F; Zhang W; Huang Y
    Opt Express; 2016 Oct; 24(22):25619-25628. PubMed ID: 27828497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of biphoton correlation trains through spectral filtering.
    Lukens JM; Odele O; Langrock C; Fejer MM; Leaird DE; Weiner AM
    Opt Express; 2014 Apr; 22(8):9585-96. PubMed ID: 24787846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-photon coincident-frequency entanglement via extended phase matching.
    Kuzucu O; Fiorentino M; Albota MA; Wong FN; Kärtner FX
    Phys Rev Lett; 2005 Mar; 94(8):083601. PubMed ID: 15783891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms.
    Cho YW; Park KK; Lee JC; Kim YH
    Phys Rev Lett; 2014 Aug; 113(6):063602. PubMed ID: 25148327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of ultraviolet entangled photons in a semiconductor.
    Edamatsu K; Oohata G; Shimizu R; Itoh T
    Nature; 2004 Sep; 431(7005):167-70. PubMed ID: 15356626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compensation-free broadband entangled photon pair sources.
    Chen C; Zhu EY; Riazi A; Gladyshev AV; Corbari C; Ibsen M; Kazansky PG; Qian L
    Opt Express; 2017 Sep; 25(19):22667-22678. PubMed ID: 29041574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1.5 μm polarization entanglement generation based on birefringence in silicon wire waveguides.
    Lv N; Zhang W; Guo Y; Zhou Q; Huang Y; Peng J
    Opt Lett; 2013 Aug; 38(15):2873-6. PubMed ID: 23903167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy-time entanglement generation in optical fibers under CW pumping.
    Dong S; Zhou Q; Zhang W; He Y; Zhang W; You L; Huang Y; Peng J
    Opt Express; 2014 Jan; 22(1):359-68. PubMed ID: 24514996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell.
    Shu C; Chen P; Chow TK; Zhu L; Xiao Y; Loy MM; Du S
    Nat Commun; 2016 Sep; 7():12783. PubMed ID: 27658721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable multiparticle entanglement of trapped ions.
    Häffner H; Hänsel W; Roos CF; Benhelm J; Chek-al-Kar D; Chwalla M; Körber T; Rapol UD; Riebe M; Schmidt PO; Becher C; Gühne O; Dür W; Blatt R
    Nature; 2005 Dec; 438(7068):643-6. PubMed ID: 16319886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Super-resolving phase measurements with a multiphoton entangled state.
    Mitchell MW; Lundeen JS; Steinberg AM
    Nature; 2004 May; 429(6988):161-4. PubMed ID: 15141206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-visibility two-photon interference of frequency-time entangled photons generated in a quasi-phase-matched AlGaAs waveguide.
    Sarrafi P; Zhu EY; Holmes BM; Hutchings DC; Aitchison S; Qian L
    Opt Lett; 2014 Sep; 39(17):5188-91. PubMed ID: 25166106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proposal for in-fiber generation of telecom-band polarization-entangled photon pairs using a periodically poled fiber.
    Helt LG; Zhu EY; Liscidini M; Qian L; Sipe JE
    Opt Lett; 2009 Jul; 34(14):2138-40. PubMed ID: 19823527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entanglement distribution using a biphoton frequency comb compatible with DWDM technology.
    Fujimoto R; Yamazaki T; Kobayashi T; Miki S; China F; Terai H; Ikuta R; Yamamoto T
    Opt Express; 2022 Sep; 30(20):36711-36716. PubMed ID: 36258594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.