These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 19770882)

  • 1. Analysis of photonic band structure in a one-dimensional photonic crystal containing single-negative materials.
    Yeh DW; Wu CJ
    Opt Express; 2009 Sep; 17(19):16666-80. PubMed ID: 19770882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband one-dimensional photonic crystal wave plate containing single-negative materials.
    Chen Y
    Opt Express; 2010 Sep; 18(19):19920-9. PubMed ID: 20940883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unusual transmission bands of one-dimensional photonic crystals containing single-negative materials.
    Chen Y
    Opt Express; 2009 Oct; 17(22):20333-41. PubMed ID: 19997261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exciton polaritons in one-dimensional metal-semiconductor photonic crystals.
    Márquez-Islas R; Flores-Desirena B; Pérez-Rodríguez F
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6584-8. PubMed ID: 19205244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enlargement of zero averaged refractive index gaps in the photonic heterostructures containing negative-index materials.
    Xiang Y; Dai X; Wen S; Fan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056604. PubMed ID: 18233779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal higher-lying band gaps for photonic crystals with large dielectric contrast.
    Chern RL; Chao SD
    Opt Express; 2008 Oct; 16(21):16600-8. PubMed ID: 18852769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Band structures of one-dimensional subwavelength photonic crystals containing metamaterials.
    Weng Y; Wang ZG; Chen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046601. PubMed ID: 17501001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creation of large band gap with anisotropic annular photonic crystal slab structure.
    Shi P; Huang K; Kang XL; Li YP
    Opt Express; 2010 Mar; 18(5):5221-8. PubMed ID: 20389535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental study of photonic crystals consisting of E-negative and mu-negative materials.
    Zhang L; Zhang Y; He L; Li H; Chen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056615. PubMed ID: 17280014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs.
    Mohammadi S; Eftekhar AA; Khelif A; Adibi A
    Opt Express; 2010 Apr; 18(9):9164-72. PubMed ID: 20588763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of one-dimensional photonic crystals containing single-negative materials.
    Jiang H; Chen H; Li H; Zhang Y; Zi J; Zhu S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066607. PubMed ID: 15244764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Omnidirectional bandgaps in Fibonacci quasicrystals containing single-negative materials.
    Deng XH; Liu JT; Huang JH; Zou L; Liu NH
    J Phys Condens Matter; 2010 Feb; 22(5):055403. PubMed ID: 21386341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study on photonic devices based on a commensurate two-pattern photonic crystal.
    Jia L; Thomas EL
    Opt Lett; 2011 Sep; 36(17):3416-8. PubMed ID: 21886229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zero-(n) non-Bragg gap plasmon-polariton modes and omni-reflectance in 1D metamaterial photonic superlattices.
    Agudelo-Arango C; Mejía-Salazar JR; Porras-Montenegro N; Reyes-Gómez E; Oliveira LE
    J Phys Condens Matter; 2011 Jun; 23(21):215003. PubMed ID: 21555838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of interference between two optical beams in a quasi-zero electric permittivity photonic crystal superlattice.
    Li Z; Hattori HT
    Appl Opt; 2013 Feb; 52(4):854-61. PubMed ID: 23385928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doped colloidal photonic crystal structure with refractive index chirping to the [111] crystallographic axis.
    Park JH; Choi WS; Koo HY; Hong JC; Kim DY
    Langmuir; 2006 Jan; 22(1):94-100. PubMed ID: 16378406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II.
    Cao W; Muñoz A; Palffy-Muhoray P; Taheri B
    Nat Mater; 2002 Oct; 1(2):111-3. PubMed ID: 12618825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Syntheses, structure, some band gaps, and electronic structures of CsLnZnTe3 (Ln=La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Y).
    Yao J; Deng B; Sherry LJ; McFarland AD; Ellis DE; Van Duyne RP; Ibers JA
    Inorg Chem; 2004 Nov; 43(24):7735-40. PubMed ID: 15554638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials.
    Bria D; Djafari-Rouhani B; Akjouj A; Dobrzynski L; Vigneron JP; El-Boudouti EH; Nougaoui A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066613. PubMed ID: 15244770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Second-harmonic generation at angular incidence in a negative-positive index photonic band-gap structure.
    D'Aguanno G; Mattiucci N; Scalora M; Bloemer MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026608. PubMed ID: 17025558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.