These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19770896)

  • 1. Modeling of enhanced field confinement and scattering by optical wire antennas.
    Locatelli A; De Angelis C; Modotto D; Boscolo S; Sacchetto F; Midrio M; Capobianco AD; Pigozzo FM; Someda CG
    Opt Express; 2009 Sep; 17(19):16792-800. PubMed ID: 19770896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the optical properties of wire antennas with displaced terminals.
    Locatelli A
    Opt Express; 2010 Apr; 18(9):9504-10. PubMed ID: 20588796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient frequency-domain finite element modeling of two-dimensional elastodynamic scattering.
    Wilcox PD; Velichko A
    J Acoust Soc Am; 2010 Jan; 127(1):155-65. PubMed ID: 20058959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and numerical investigation of feed-point parameters in a 3-D hyperthermia applicator using different FDTD models of feed networks.
    Nadobny J; Fähling H; Hagmann MJ; Turner PF; Wlodarczyk W; Gellermann JM; Deuflhard P; Wust P
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1348-59. PubMed ID: 12450365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human exposure assessment in the near field of GSM base-station antennas using a hybrid finite element/method of moments technique.
    Meyer FJ; Davidson DB; Jakobus U; Stuchly MA
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):224-33. PubMed ID: 12665036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoengineering and characterization of gold dipole nanoantennas with enhanced integrated scattering properties.
    Wissert MD; Schell AW; Ilin KS; Siegel M; Eisler HJ
    Nanotechnology; 2009 Oct; 20(42):425203. PubMed ID: 19779233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloidal quantum dots as probes of excitation field enhancement in photonic antennas.
    Aouani H; Itzhakov S; Gachet D; Devaux E; Ebbesen TW; Rigneault H; Oron D; Wenger J
    ACS Nano; 2010 Aug; 4(8):4571-8. PubMed ID: 20731440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the light-scattering form factor on the Bragg diffraction patterns of arrays of metallic nanoparticles.
    Gonçalves MR; Siegel A; Marti O
    J Microsc; 2008 Mar; 229(Pt 3):475-82. PubMed ID: 18331498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design optimization of interstitial antennas.
    Iskander MF; Tumeh AM
    IEEE Trans Biomed Eng; 1989 Feb; 36(2):238-46. PubMed ID: 2917769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling ultrasonic transient scattering from biological tissues including their dispersive properties directly in the time domain.
    Norton GV; Novarini JC
    Mol Cell Biomech; 2007 Jun; 4(2):75-85. PubMed ID: 17937112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antenna modeling considerations for accurate SAR calculations in human phantoms in close proximity to GSM cellular base station antennas.
    van Wyk MJ; Bingle M; Meyer FJ
    Bioelectromagnetics; 2005 Sep; 26(6):502-9. PubMed ID: 15931680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional electromagnetic power deposition in tumors using interstitial antenna arrays.
    Furse CM; Iskander MF
    IEEE Trans Biomed Eng; 1989 Oct; 36(10):977-86. PubMed ID: 2793198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical antenna gain. 1: transmitting antennas.
    Klein BJ; Degnan JJ
    Appl Opt; 1974 Sep; 13(9):2134-41. PubMed ID: 20134641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical model of longitudinal wave scattering in polycrystals.
    Ghoshal G; Turner JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1419-28. PubMed ID: 19574152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies.
    Giannini V; Berrier A; Maier SA; Sánchez-Gil JA; Rivas JG
    Opt Express; 2010 Feb; 18(3):2797-807. PubMed ID: 20174108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic nanowire antennas: experiment, simulation, and theory.
    Dorfmüller J; Vogelgesang R; Khunsin W; Rockstuhl C; Etrich C; Kern K
    Nano Lett; 2010 Sep; 10(9):3596-603. PubMed ID: 20726567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency-domain modeling of TM wave propagation in optical nanostructures with a third-order nonlinear response.
    Kildishev AV; Sivan Y; Litchinitser NM; Shalaev VM
    Opt Lett; 2009 Nov; 34(21):3364-6. PubMed ID: 19881595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling a surface-mounted Lamb wave emission-reception system: applications to structural health monitoring.
    Moulin E; Grondel S; Assaad J; Duquenne L
    J Acoust Soc Am; 2008 Dec; 124(6):3521-7. PubMed ID: 19206781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Piezoacoustic wave spectra using improved surface impedance matrix: application to high impedance-contrast layered plates.
    Zhang VY; Dubus B; Collet B; Destrade M
    J Acoust Soc Am; 2008 Apr; 123(4):1972-82. PubMed ID: 18397005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The spectral shift between near- and far-field resonances of optical nano-antennas.
    Menzel C; Hebestreit E; Mühlig S; Rockstuhl C; Burger S; Lederer F; Pertsch T
    Opt Express; 2014 Apr; 22(8):9971-82. PubMed ID: 24787879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.