These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 19770943)

  • 1. Transient picosecond response of the photorefractive effect in InP:Fe.
    Mao H; Li F; Deng X
    Opt Lett; 1990 Aug; 15(16):888-90. PubMed ID: 19770943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Picosecond photorefractive response of GaAs:EL2, InP:Fe, and CdTe:V.
    Valley GC; Dubard J; Smirl AL; Glass AM
    Opt Lett; 1989 Sep; 14(17):961-3. PubMed ID: 19753025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarization-rotation switch using picosecond pulses in GaAs.
    Smirl AL; Dubard J; Cui AG; Boggess TF; Valley GC
    Opt Lett; 1989 Feb; 14(4):242-4. PubMed ID: 19749883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical and photorefractive properties of InP:Ti: a new photorefractive semiconductor.
    Nolte DD; Olsen DH; Monberg EM; Bridenbaugh PM; Glass AM
    Opt Lett; 1989 Nov; 14(22):1278-80. PubMed ID: 19759658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study on time response of semiconductor photorefractive effects under subpicosecond ultra-fast X-rays.
    Zhou H; Huang Q; He K; Gao G; Yan X; Yao D; Wang T; Tian J; Hu R; Lv M
    Philos Trans A Math Phys Eng Sci; 2023 Aug; 381(2253):20220213. PubMed ID: 37393941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Picosecond photorefractive beam coupling in GaAs.
    Valley GC; Smirl AL; Klein MB; Bohnert K; Boggess TF
    Opt Lett; 1986 Oct; 11(10):647-9. PubMed ID: 19738716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral response characterization of an InP:Fe photorefractive wavelength-self-tunable single-sideband filter.
    Vourc'h E; Hervé D
    Opt Lett; 2003 Jul; 28(13):1105-7. PubMed ID: 12879922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mid-infrared picosecond pump-dump-probe and pump-repump-probe experiments to resolve a ground-state intermediate in cyanobacterial phytochrome Cph1.
    van Wilderen LJ; Clark IP; Towrie M; van Thor JJ
    J Phys Chem B; 2009 Dec; 113(51):16354-64. PubMed ID: 19950906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Picosecond photoinduced absorption in photorefractive BaTiO(3).
    Ye P; Blouin A; Demers C; Roberge MM; Wu X
    Opt Lett; 1991 Jul; 16(13):980-2. PubMed ID: 19776849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wide-field-of-view heterodyne receiver at 1.06 microm with photorefractive InP:Fe.
    Johnson B; Mandra R; Iseler GW; Clark HR
    Opt Lett; 1993 Nov; 18(21):1840-2. PubMed ID: 19829422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photorefractive phase conjugation with orthogonally polarized pumping beams.
    Kong H; Lin C; Biernacki AM; Cronin-Golomb M
    Opt Lett; 1988 Apr; 13(4):324-6. PubMed ID: 19745887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial and Transient Effects during the Amplification of a Picosecond Pulse Beam by a Nanosecond Pump.
    Neuville C; Baccou C; Debayle A; Masson-Laborde PE; Hüller S; Casanova M; Marion D; Loiseau P; Glize K; Labaune C; Depierreux S
    Phys Rev Lett; 2016 Sep; 117(14):145001. PubMed ID: 27740791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity.
    Bose R; Sridharan D; Kim H; Solomon GS; Waks E
    Phys Rev Lett; 2012 Jun; 108(22):227402. PubMed ID: 23003653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral-temporal dynamics of high power Raman picosecond pulse using H
    Benoît A; Ilinova E; Beaudou B; Debord B; Gérôme F; Benabid F
    Opt Lett; 2017 Oct; 42(19):3896-3899. PubMed ID: 28957155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast multi-pulse transient absorption spectroscopy of fucoxanthin chlorophyll a protein from Phaeodactylum tricornutum.
    West RG; Bína D; Fuciman M; Kuznetsova V; Litvín R; Polívka T
    Biochim Biophys Acta Bioenerg; 2018 May; 1859(5):357-365. PubMed ID: 29499185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientational dependence of photorefractive two-beam coupling in InP:Fe.
    Strait J; Reed JD; Kukhtarev NV
    Opt Lett; 1990 Feb; 15(4):209-11. PubMed ID: 19759759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast-light in a photorefractive crystal for gravitational wave detection.
    Yum HN; Salit M; Pati GS; Tseng S; Hemmer PR; Shahriar MS
    Opt Express; 2008 Dec; 16(25):20448-56. PubMed ID: 19065183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple optical method for determination of crystal orientation in photorefractive crystals.
    Qu D; Guo R; Liu S; Liu Z; Gao Y
    Appl Opt; 2006 Aug; 45(24):6218-22. PubMed ID: 16892127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of magnetic field on terahertz wave generation in photorefractive periodically poled lithium niobate crystal.
    Li G; Li D; Ma G; Liu W; Tang SH
    Appl Opt; 2011 Mar; 50(8):1082-6. PubMed ID: 21394179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Moving grating and intrinsic electron-hole resonance in two-wave mixing in photorefractive InP:Fe.
    Mainguet B; Guiner FL; Picoli G
    Opt Lett; 1990 Sep; 15(17):938-40. PubMed ID: 19770958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.