These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19770958)

  • 1. Moving grating and intrinsic electron-hole resonance in two-wave mixing in photorefractive InP:Fe.
    Mainguet B; Guiner FL; Picoli G
    Opt Lett; 1990 Sep; 15(17):938-40. PubMed ID: 19770958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model for resonant intensity dependence of photorefractive two-wave mixing in InP:Fe.
    Picoli G; Gravey P; Ozkul C
    Opt Lett; 1989 Dec; 14(24):1362-4. PubMed ID: 19759683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of two wave mixing gain for moving grating technique in photorefractive BaTiO3 crystal.
    Lee SJ; Yang HR; Kim EJ; Lee YL; Kwak CH
    Opt Express; 2008 Nov; 16(24):19615-28. PubMed ID: 19030048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonant two-wave mixing in photorefractive materials with the aid of dc and ac fields.
    Kalinin VA; Shcherbin K; Solymar L; Takacs J; Webb DJ
    Opt Lett; 1997 Dec; 22(24):1852-4. PubMed ID: 18188385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High gain coherent amplification in thermally stabilized InP:Fe crystals under dc fields.
    Ozkul C; Picoli G; Gravey P; Wolffer N
    Appl Opt; 1990 Jun; 29(18):2711-7. PubMed ID: 20567319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orientational dependence of photorefractive two-beam coupling in InP:Fe.
    Strait J; Reed JD; Kukhtarev NV
    Opt Lett; 1990 Feb; 15(4):209-11. PubMed ID: 19759759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared four-wave mixing with gain and self-starting oscillators with photorefractive GaAs.
    Rajbenbach H; Imbert B; Huignard JP; Mallick S
    Opt Lett; 1989 Jan; 14(1):78-80. PubMed ID: 19749829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the photorefractive effect in InP:Fe by using two-wave mixing under electric fields.
    Mainguet B
    Opt Lett; 1988 Aug; 13(8):657. PubMed ID: 19745995
    [No Abstract]   [Full Text] [Related]  

  • 9. Optical and photorefractive properties of InP:Ti: a new photorefractive semiconductor.
    Nolte DD; Olsen DH; Monberg EM; Bridenbaugh PM; Glass AM
    Opt Lett; 1989 Nov; 14(22):1278-80. PubMed ID: 19759658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photorefractive two-wave mixing in the presence of high-speed optical phase modulation.
    Field CT; Davidson FM
    Appl Opt; 1993 Sep; 32(27):5285-98. PubMed ID: 20856337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-wave mixing in photorefractive BaTiO(3):Rh at 1.06 mum in the nanosecond regime.
    Huot N; Jonathan JM; Roosen G; Rytz D
    Opt Lett; 1997 Jul; 22(13):976-8. PubMed ID: 18185724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Picosecond photorefractive response of GaAs:EL2, InP:Fe, and CdTe:V.
    Valley GC; Dubard J; Smirl AL; Glass AM
    Opt Lett; 1989 Sep; 14(17):961-3. PubMed ID: 19753025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of the Bragg condition on an external electric field for a polymeric photorefractive material.
    Joo WJ; Chun H; Moon IK; Kim N
    Appl Opt; 2003 Jun; 42(16):3271-6. PubMed ID: 12790479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Talbot effect by a photorefractive volume phase grating.
    Forte G; Lencina A; Tebaldi M; Bolognini N
    Appl Opt; 2012 Feb; 51(4):479-85. PubMed ID: 22307118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wide-field-of-view heterodyne receiver at 1.06 microm with photorefractive InP:Fe.
    Johnson B; Mandra R; Iseler GW; Clark HR
    Opt Lett; 1993 Nov; 18(21):1840-2. PubMed ID: 19829422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degenerate four-wave mixing in KNbO(3): picosecond and photorefractive nanosecond response.
    Zgonik M; Biaggio I; Bertele U; Günter P
    Opt Lett; 1991 Jul; 16(13):977-9. PubMed ID: 19776848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe.
    Chauvet M; Hawkins SA; Salamo GJ; Segev M; Bliss DF; Bryant G
    Opt Lett; 1996 Sep; 21(17):1333-5. PubMed ID: 19876343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase shifts of photorefractive gratings and phase-conjugate waves.
    McMichael I; Yeh P
    Opt Lett; 1987 Jan; 12(1):48-50. PubMed ID: 19738789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonuniform dynamic gratings in photorefractive media with nonlocal response.
    Bugaychuk S; Kovács L; Mandula G; Polgár K; Rupp RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046603. PubMed ID: 12786505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the space-charge field amplitude in polymeric photorefractive polymers.
    Hwang UJ; Choi CS; Vuong NQ; Kim N
    J Chem Phys; 2005 Dec; 123(24):244905. PubMed ID: 16396571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.