These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 19771030)

  • 1. Proposed Fraunhofer-wavelength atomic filter at 534.9 nm.
    Gelbwachs JA
    Opt Lett; 1990 Oct; 15(20):1165-7. PubMed ID: 19771030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 422.7-nm atomic filter with superior solar background rejection.
    Gelbwachs JA
    Opt Lett; 1990 Feb; 15(4):236-8. PubMed ID: 19759768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Passive Fraunhofer-wavelength atomic filter at 422.7 nm.
    Gelbwachs JA; Chan YC
    Opt Lett; 1991 Mar; 16(5):336-8. PubMed ID: 19773926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental demonstration of internal wavelength conversion in the magnesium atomic filter.
    Chan YC; Tabat MD; Gelbwachs JA
    Opt Lett; 1989 Jul; 14(14):722-4. PubMed ID: 19752947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lamp-pumped thallium atomic line filter at 535.046 nm.
    Oehry BP; Schupita W; Magerl G
    Opt Lett; 1991 Oct; 16(20):1620-2. PubMed ID: 19777051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast efficient Ca atomic resonance filter at 423 nm.
    Walther FG
    Opt Lett; 1992 Nov; 17(22):1632-4. PubMed ID: 19798269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solar background rejection by a pressure-broadened atomic resonance filter operating at a Fraunhofer wavelength.
    Gelbwachs JA; Tabat MD
    Opt Lett; 1989 Feb; 14(4):211-3. PubMed ID: 19749872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrahigh-resolution, wide-field-of-view optical filter for the detection of frequency-doubled Nd:YAG radiation.
    Shay TM; Chung YC
    Opt Lett; 1988 Jun; 13(6):443-5. PubMed ID: 19745926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Transmission properties of Faraday anomalous dispersion optical filter at 532 nm].
    Peng Y; Cheng Z; Qiu J; Tang J; Zheng L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Jun; 21(3):294-7. PubMed ID: 12947649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One GHz linewidth, 33 line per mm, wide angle imaging filter at the potassium resonant line.
    Qian L; Zaidi SH; Miles RB
    Opt Express; 2006 Nov; 14(23):11113-27. PubMed ID: 19529526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Output power enhancement of a self-frequency-doubled laser by selective excitation of inequivalent active centers in La
    Fang Q; Yu H; Zhang H; Zhang G; Wang J; Wu Y
    Opt Lett; 2017 Dec; 42(23):4861-4864. PubMed ID: 29216129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of burn-through times for laser protective eyewear.
    Swearengen PM; Vance WF; Counts DL
    Am Ind Hyg Assoc J; 1988 Dec; 49(12):608-12. PubMed ID: 3213814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of 532-nm frequency-doubled Nd:YAG radiation in an active rubidium atomic resonance filter.
    Minden M; Bruesselbach H
    Opt Lett; 1990 Apr; 15(7):384-6. PubMed ID: 19767951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An atomic optical filter working at 1.5 μm based on internal frequency stabilized laser pumping.
    Yin L; Luo B; Dang A; Guo H
    Opt Express; 2014 Apr; 22(7):7416-21. PubMed ID: 24718116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-laser wavelength Thomson scattering at Wendelstein 7-X.
    Pasch E; Beurskens MNA; Bozhenkov SA; Fuchert G; Wolf RC;
    Rev Sci Instrum; 2018 Oct; 89(10):10C115. PubMed ID: 30399715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of FM-to-AM conversion in a broadband Nd:glass regenerative amplifier with an intracavity birefringent filter.
    Guo J; Wang J; Pan X; Lu X; Xia G; Wang X; Zhang S; Fan W; Li X
    Appl Opt; 2019 Feb; 58(5):1261-1270. PubMed ID: 30873996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 10 Gbit/s optical wavelength converter with a Brillouin scattering-based spectral filter.
    Granot E; Sternklar S; Chayet H; Ben-Ezra S; Narkiss N; Shahar N; Sher A; Tsadka S
    Appl Opt; 2005 Aug; 44(23):4959-64. PubMed ID: 16114535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal iodine absorption line applied for spaceborne high spectral resolution lidar.
    Dong J; Liu J; Bi D; Ma X; Zhu X; Zhu X; Chen W
    Appl Opt; 2018 Jul; 57(19):5413-5419. PubMed ID: 30117841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diode laser operating on an atomic transition limited by an isotope ⁸⁷Rb Faraday filter at 780 nm.
    Tao Z; Hong Y; Luo B; Chen J; Guo H
    Opt Lett; 2015 Sep; 40(18):4348-51. PubMed ID: 26371933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observing the sun with a fully tunable Lyot-Ohman filter.
    Beckers JM; Dickson L; Joyce RS
    Appl Opt; 1975 Sep; 14(9):2061-6. PubMed ID: 20154965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.