These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 19771448)

  • 1. Influence of crank length on cycle ergometry performance of well-trained female cross-country mountain bike athletes.
    Macdermid PW; Edwards AM
    Eur J Appl Physiol; 2010 Jan; 108(1):177-82. PubMed ID: 19771448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of crank length and cadence on mechanical efficiency in hand cycling.
    Goosey-Tolfrey VL; Alfano H; Fowler N
    Eur J Appl Physiol; 2008 Jan; 102(2):189-94. PubMed ID: 17909841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of crank length and crank width on maximal hand cycling power and cadence.
    Krämer C; Hilker L; Böhm H
    Eur J Appl Physiol; 2009 Jul; 106(5):749-57. PubMed ID: 19434421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling.
    Bertucci W; Grappe F; Girard A; Betik A; Rouillon JD
    J Biomech; 2005 May; 38(5):1003-10. PubMed ID: 15797582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of an increasing versus constant crank rate on peak physiological responses during incremental arm crank ergometry.
    Price MJ; Bottoms L; Smith PM; Nicholettos A
    J Sports Sci; 2011 Feb; 29(3):263-9. PubMed ID: 21154011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of crank rate strategy on peak aerobic power and peak physiological responses during arm crank ergometry.
    Smith PM; Doherty M; Price MJ
    J Sports Sci; 2007 Apr; 25(6):711-8. PubMed ID: 17454538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of crank length and crank-axle height on standing arm-crank (grinding) power.
    Neville V; Pain MT; Kantor J; Folland JP
    Med Sci Sports Exerc; 2010 Feb; 42(2):381-7. PubMed ID: 19927020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of isokinetic cycling versus weight training on maximal power output and endurance performance in cycling.
    Koninckx E; Van Leemputte M; Hespel P
    Eur J Appl Physiol; 2010 Jul; 109(4):699-708. PubMed ID: 20213468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determinants of maximal cycling power: crank length, pedaling rate and pedal speed.
    Martin JC; Spirduso WW
    Eur J Appl Physiol; 2001 May; 84(5):413-8. PubMed ID: 11417428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relative vs. absolute physiological measures as predictors of mountain bike cross-country race performance.
    Gregory J; Johns DP; Walls JT
    J Strength Cond Res; 2007 Feb; 21(1):17-22. PubMed ID: 17313256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of cycling cadence on the phases of joint power, crank power, force and force effectiveness.
    Ettema G; Lorås H; Leirdal S
    J Electromyogr Kinesiol; 2009 Apr; 19(2):e94-101. PubMed ID: 18178104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraindividual Correlation and Comparison of Maximal Aerobic Capacity and Maximum Power in Hand-Crank and Bicycle Spiroergometry.
    Schnadthorst PG; Hoffmeister M; Grunwald M; Wagner CM; Schulze C
    J Sport Rehabil; 2024 Sep; 33(7):582-589. PubMed ID: 39084616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of peak oxygen uptake and exercise efficiency between upper-body poling and arm crank ergometry in trained paraplegic and able-bodied participants.
    Baumgart JK; Gürtler L; Ettema G; Sandbakk Ø
    Eur J Appl Physiol; 2018 Sep; 118(9):1857-1867. PubMed ID: 29936549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlations between physiological variables and performance in high level cross country off road cyclists.
    Impellizzeri FM; Marcora SM; Rampinini E; Mognoni P; Sassi A
    Br J Sports Med; 2005 Oct; 39(10):747-51. PubMed ID: 16183772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force-velocity profiles of track cyclists differ between seated and non-seated positions.
    Dwyer DB; Molaro C; Rouffet DM
    Sports Biomech; 2023 Apr; 22(4):621-632. PubMed ID: 35758132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laboratory versus outdoor cycling conditions: differences in pedaling biomechanics.
    Bertucci W; Grappe F; Groslambert A
    J Appl Biomech; 2007 May; 23(2):87-92. PubMed ID: 17603128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of crank length on joint-specific power during maximal cycling.
    Barratt PR; Korff T; Elmer SJ; Martin JC
    Med Sci Sports Exerc; 2011 Sep; 43(9):1689-97. PubMed ID: 21311357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cycling with Short Crank Lengths Improved Economy in Novices.
    Burrus BM; Armendariz J; Moscicki BM
    Int J Exerc Sci; 2021; 14(1):1123-1137. PubMed ID: 35096228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of maximal power output in isokinetic and non-isokinetic cycling. A comparison of two methods.
    Baron R; Bachl N; Petschnig R; Tschan H; Smekal G; Pokan R
    Int J Sports Med; 1999 Nov; 20(8):532-7. PubMed ID: 10606217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerobic power and peak power of elite America's Cup sailors.
    Neville V; Pain MT; Folland JP
    Eur J Appl Physiol; 2009 May; 106(1):149-57. PubMed ID: 19234715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.