BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 1977163)

  • 41. Thermostable chaperonin from Clostridium thermocellum.
    Cross SJ; Ciruela A; Poomputsa K; Romaniec MP; Freedman RB
    Biochem J; 1996 Jun; 316 ( Pt 2)(Pt 2):615-22. PubMed ID: 8687408
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crystallization of the cpn60/cpn10 complex ('holo-chaperonin') from Thermus thermophilus.
    Lissin NM; Sedelnikova SE; Ryazantsev SN
    FEBS Lett; 1992 Oct; 311(1):22-4. PubMed ID: 1356830
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Conformational states of ribulosebisphosphate carboxylase and their interaction with chaperonin 60.
    van der Vies SM; Viitanen PV; Gatenby AA; Lorimer GH; Jaenicke R
    Biochemistry; 1992 Apr; 31(14):3635-44. PubMed ID: 1348956
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of a GroES (CPN10)-related sequence motif in the GroEL (CPN60) chaperonins.
    Gupta RS
    Biochem Mol Biol Int; 1994 Jun; 33(3):591-5. PubMed ID: 7951076
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of the conformational state and in vitro refolding of yeast chaperonin protein cpn10 with bacterial GroES.
    de Jongh HH; Rospert S; Dobson CM
    Biochem Biophys Res Commun; 1998 Mar; 244(3):884-8. PubMed ID: 9535761
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Significance of the N-terminal domain for the function of chloroplast cpn20 chaperonin.
    Bonshtien AL; Weiss C; Vitlin A; Niv A; Lorimer GH; Azem A
    J Biol Chem; 2007 Feb; 282(7):4463-4469. PubMed ID: 17178727
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The stability and hydrophobicity of cytosolic and mitochondrial malate dehydrogenases and their relation to chaperonin-assisted folding.
    Staniforth RA; Cortés A; Burston SG; Atkinson T; Holbrook JJ; Clarke AR
    FEBS Lett; 1994 May; 344(2-3):129-35. PubMed ID: 7910565
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis.
    Hayer-Hartl MK; Weber F; Hartl FU
    EMBO J; 1996 Nov; 15(22):6111-21. PubMed ID: 8947033
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Facilitated folding of actins and tubulins occurs via a nucleotide-dependent interaction between cytoplasmic chaperonin and distinctive folding intermediates.
    Melki R; Cowan NJ
    Mol Cell Biol; 1994 May; 14(5):2895-904. PubMed ID: 7909354
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular chaperones in pancreatic tissue: the presence of cpn10, cpn60 and hsp70 in distinct compartments along the secretory pathway of the acinar cells.
    Vélez-Granell CS; Arias AE; Torres-Ruíz JA; Bendayan M
    J Cell Sci; 1994 Mar; 107 ( Pt 3)():539-49. PubMed ID: 7911805
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stage-specific expression of the mitochondrial co-chaperonin of Leishmania donovani, CPN10.
    Zamora-Veyl FB; Kroemer M; Zander D; Clos J
    Kinetoplastid Biol Dis; 2005 Apr; 4(1):3. PubMed ID: 15862128
    [TBL] [Abstract][Full Text] [Related]  

  • 52. GroEL of the nitrogen-fixing cyanobacterium Anabaena sp. strain L-31 exhibits GroES and ATP-independent refolding activity.
    Potnis AA; Rajaram H; Apte SK
    J Biochem; 2016 Mar; 159(3):295-304. PubMed ID: 26449235
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Immunochemical localization of a region of chaperonin-60 important for productive interaction with chaperonin-10.
    Burns DL; Kessel M; Arciniega JL; Karpas A; Gould-Kostka J
    J Biol Chem; 1992 Dec; 267(36):25632-5. PubMed ID: 1361184
    [TBL] [Abstract][Full Text] [Related]  

  • 54. No evidence for a forced-unfolding mechanism during ATP/GroES binding to substrate-bound GroEL: no observable protection of metastable Rubisco intermediate or GroEL-bound Rubisco from tritium exchange.
    Park ES; Fenton WA; Horwich AL
    FEBS Lett; 2005 Feb; 579(5):1183-6. PubMed ID: 15710410
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Affinity purification, overexpression, and characterization of chaperonin 10 homologues synthesized with and without N-terminal acetylation.
    Ryan MT; Naylor DJ; Hoogenraad NJ; Høj PB
    J Biol Chem; 1995 Sep; 270(37):22037-43. PubMed ID: 7665625
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of a chaperonin binding site in a chloroplast precursor protein.
    Dessauer CW; Bartlett SG
    J Biol Chem; 1994 Aug; 269(31):19766-76. PubMed ID: 7914191
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Alteration of the quaternary structure of cpn60 modulates chaperonin-assisted folding. Implications for the mechanism of chaperonin action.
    Mendoza JA; Demeler B; Horowitz PM
    J Biol Chem; 1994 Jan; 269(4):2447-51. PubMed ID: 7905478
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Differential expression of the multiple chaperonins of Mycobacterium smegmatis.
    Rao T; Lund PA
    FEMS Microbiol Lett; 2010 Sep; 310(1):24-31. PubMed ID: 20618852
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cloning, expression, and purification of a functional nonacetylated mammalian mitochondrial chaperonin 10.
    Dickson R; Larsen B; Viitanen PV; Tormey MB; Geske J; Strange R; Bemis LT
    J Biol Chem; 1994 Oct; 269(43):26858-64. PubMed ID: 7929423
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A chaperonin from a thermophilic bacterium, Thermus thermophilus.
    Yoshida M; Ishii N; Muneyuki E; Taguchi H
    Philos Trans R Soc Lond B Biol Sci; 1993 Mar; 339(1289):305-12. PubMed ID: 8098535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.