BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 19772356)

  • 1. Branch-specific sialylation of IgG-Fc glycans by ST6Gal-I.
    Barb AW; Brady EK; Prestegard JH
    Biochemistry; 2009 Oct; 48(41):9705-7. PubMed ID: 19772356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-inflammatory IgG production requires functional P1 promoter in β-galactoside α2,6-sialyltransferase 1 (ST6Gal-1) gene.
    Jones MB; Nasirikenari M; Lugade AA; Thanavala Y; Lau JT
    J Biol Chem; 2012 May; 287(19):15365-70. PubMed ID: 22427662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR characterization of immunoglobulin G Fc glycan motion on enzymatic sialylation.
    Barb AW; Meng L; Gao Z; Johnson RW; Moremen KW; Prestegard JH
    Biochemistry; 2012 Jun; 51(22):4618-26. PubMed ID: 22574931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characterization of anti-inflammatory immunoglobulin G Fc proteins.
    Ahmed AA; Giddens J; Pincetic A; Lomino JV; Ravetch JV; Wang LX; Bjorkman PJ
    J Mol Biol; 2014 Sep; 426(18):3166-3179. PubMed ID: 25036289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Fc N-glycan sialylation on IgG structure.
    Zhang Z; Shah B; Richardson J
    MAbs; 2019; 11(8):1381-1390. PubMed ID: 31411531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Method to Detect the Binding of Hyper-Glycosylated Fragment Crystallizable (Fc) Region of Human IgG1 to Glycan Receptors.
    Blundell P; Pleass R
    Methods Mol Biol; 2019; 1904():417-421. PubMed ID: 30539483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure of human α-2,6-sialyltransferase reveals the binding mode of complex glycans.
    Kuhn B; Benz J; Greif M; Engel AM; Sobek H; Rudolph MG
    Acta Crystallogr D Biol Crystallogr; 2013 Sep; 69(Pt 9):1826-38. PubMed ID: 23999306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sialylation of human IgG-Fc carbohydrate by transfected rat alpha2,6-sialyltransferase.
    Jassal R; Jenkins N; Charlwood J; Camilleri P; Jefferis R; Lund J
    Biochem Biophys Res Commun; 2001 Aug; 286(2):243-9. PubMed ID: 11500028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic.
    Barb AW; Prestegard JH
    Nat Chem Biol; 2011 Mar; 7(3):147-53. PubMed ID: 21258329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estrogen induces St6gal1 expression and increases IgG sialylation in mice and patients with rheumatoid arthritis: a potential explanation for the increased risk of rheumatoid arthritis in postmenopausal women.
    Engdahl C; Bondt A; Harre U; Raufer J; Pfeifle R; Camponeschi A; Wuhrer M; Seeling M; Mårtensson IL; Nimmerjahn F; Krönke G; Scherer HU; Forsblad-d'Elia H; Schett G
    Arthritis Res Ther; 2018 May; 20(1):84. PubMed ID: 29720252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IgG sialylation occurs in B cells pre antibody secretion.
    Werner A; Hanić M; Zaitseva OO; Lauc G; Lux A; Nitschke L; Nimmerjahn F
    Front Immunol; 2024; 15():1402000. PubMed ID: 38827747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Processing of complex N-glycans in IgG Fc-region is affected by core fucosylation.
    Castilho A; Gruber C; Thader A; Oostenbrink C; Pechlaner M; Steinkellner H; Altmann F
    MAbs; 2015; 7(5):863-70. PubMed ID: 26067753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Majority of alpha2,6-sialylated glycans in the adult mouse brain exist in O-glycans: SALSA-MS analysis for knockout mice of alpha2,6-sialyltransferase genes.
    Ohmi Y; Nishikaze T; Kitaura Y; Ito T; Yamamoto S; Sugiyama F; Matsuyama M; Takahashi Y; Takeda A; Kawahara T; Okajima T; Furukawa K; Furukawa K
    Glycobiology; 2021 Jun; 31(5):557-570. PubMed ID: 33242079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic basis for N-glycan sialylation: structure of rat α2,6-sialyltransferase (ST6GAL1) reveals conserved and unique features for glycan sialylation.
    Meng L; Forouhar F; Thieker D; Gao Z; Ramiah A; Moniz H; Xiang Y; Seetharaman J; Milaninia S; Su M; Bridger R; Veillon L; Azadi P; Kornhaber G; Wells L; Montelione GT; Woods RJ; Tong L; Moremen KW
    J Biol Chem; 2013 Nov; 288(48):34680-98. PubMed ID: 24155237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality.
    Scallon BJ; Tam SH; McCarthy SG; Cai AN; Raju TS
    Mol Immunol; 2007 Mar; 44(7):1524-34. PubMed ID: 17045339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation.
    Kaneko Y; Nimmerjahn F; Ravetch JV
    Science; 2006 Aug; 313(5787):670-3. PubMed ID: 16888140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating IgG effector function by Fc glycan engineering.
    Li T; DiLillo DJ; Bournazos S; Giddens JP; Ravetch JV; Wang LX
    Proc Natl Acad Sci U S A; 2017 Mar; 114(13):3485-3490. PubMed ID: 28289219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc.
    Anthony RM; Nimmerjahn F; Ashline DJ; Reinhold VN; Paulson JC; Ravetch JV
    Science; 2008 Apr; 320(5874):373-6. PubMed ID: 18420934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interplay of protein engineering and glycoengineering to fine-tune antibody glycosylation and its impact on effector functions.
    Wang Q; Wang T; Zhang R; Yang S; McFarland KS; Chung CY; Jia H; Wang LX; Cipollo JF; Betenbaugh MJ
    Biotechnol Bioeng; 2022 Jan; 119(1):102-117. PubMed ID: 34647616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terminal sugars of Fc glycans influence antibody effector functions of IgGs.
    Raju TS
    Curr Opin Immunol; 2008 Aug; 20(4):471-8. PubMed ID: 18606225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.