These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19772358)

  • 21. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel.
    Nam J; Lim H; Kim D; Shin S
    Lab Chip; 2011 Oct; 11(19):3361-4. PubMed ID: 21842070
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The analytical approach to polydimethylsiloxane microfluidic technology and its biological applications.
    Kartalov EP; Anderson WF; Scherer A
    J Nanosci Nanotechnol; 2006 Aug; 6(8):2265-77. PubMed ID: 17037833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Double Emulsion Generation Using a Polydimethylsiloxane (PDMS) Co-axial Flow Focus Device.
    Cole RH; Tran TM; Abate AR
    J Vis Exp; 2015 Dec; (106):e53516. PubMed ID: 26780079
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leakage-free bonding of porous membranes into layered microfluidic array systems.
    Chueh BH; Huh D; Kyrtsos CR; Houssin T; Futai N; Takayama S
    Anal Chem; 2007 May; 79(9):3504-8. PubMed ID: 17388566
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes.
    Lewpiriyawong N; Yang C; Lam YC
    Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective and eco-friendly method for determination of mercury(II) ions in aqueous samples using an on-line AuNPs-PDMS composite microfluidic device/ICP-MS system.
    Hsu KC; Lee CF; Tseng WC; Chao YY; Huang YL
    Talanta; 2014 Oct; 128():408-13. PubMed ID: 25059179
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laminar flow mediated continuous single-cell analysis on a novel poly(dimethylsiloxane) microfluidic chip.
    Deng B; Tian Y; Yu X; Song J; Guo F; Xiao Y; Zhang Z
    Anal Chim Acta; 2014 Apr; 820():104-11. PubMed ID: 24745743
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions.
    Chen YA; King AD; Shih HC; Peng CC; Wu CY; Liao WH; Tung YC
    Lab Chip; 2011 Nov; 11(21):3626-33. PubMed ID: 21915399
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid automatic creation of monodisperse emulsion droplets by microfluidic device with degassed PDMS slab as a detachable suction actuator.
    Murata Y; Nakashoji Y; Kondo M; Tanaka Y; Hashimoto M
    Electrophoresis; 2018 Feb; 39(3):504-511. PubMed ID: 28815723
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A 3D porous polymer monolith-based platform integrated in poly(dimethylsiloxane) microchips for immunoassay.
    Kang QS; Shen XF; Hu NN; Hu MJ; Liao H; Wang HZ; He ZK; Huang WH
    Analyst; 2013 May; 138(9):2613-9. PubMed ID: 23478568
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-efficiency single-cell entrapment and fluorescence in situ hybridization analysis using a poly(dimethylsiloxane) microfluidic device integrated with a black poly(ethylene terephthalate) micromesh.
    Matsunaga T; Hosokawa M; Arakaki A; Taguchi T; Mori T; Tanaka T; Takeyama H
    Anal Chem; 2008 Jul; 80(13):5139-45. PubMed ID: 18537270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A fast cell loading and high-throughput microfluidic system for long-term cell culture in zero-flow environments.
    Luo C; Zhu X; Yu T; Luo X; Ouyang Q; Ji H; Chen Y
    Biotechnol Bioeng; 2008 Sep; 101(1):190-5. PubMed ID: 18646225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of an Open Microfluidic Device for Immunoblotting.
    Abdel-Sayed P; Yamauchi KA; Gerver RE; Herr AE
    Anal Chem; 2017 Sep; 89(18):9643-9648. PubMed ID: 28825964
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polybetaine modification of PDMS microfluidic devices to resist thrombus formation in whole blood.
    Zhang Z; Borenstein J; Guiney L; Miller R; Sukavaneshvar S; Loose C
    Lab Chip; 2013 May; 13(10):1963-8. PubMed ID: 23563730
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flow-through functionalized PDMS microfluidic channels with dextran derivative for ELISAs.
    Yu L; Li CM; Liu Y; Gao J; Wang W; Gan Y
    Lab Chip; 2009 May; 9(9):1243-7. PubMed ID: 19370243
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Digital polymerase chain reaction in an array of femtoliter polydimethylsiloxane microreactors.
    Men Y; Fu Y; Chen Z; Sims PA; Greenleaf WJ; Huang Y
    Anal Chem; 2012 May; 84(10):4262-6. PubMed ID: 22482776
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates.
    Gervais L; Delamarche E
    Lab Chip; 2009 Dec; 9(23):3330-7. PubMed ID: 19904397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic device for immunoassays based on surface plasmon resonance imaging.
    Luo Y; Yu F; Zare RN
    Lab Chip; 2008 May; 8(5):694-700. PubMed ID: 18432338
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS).
    Abdelgawad M; Wu C; Chien WY; Geddie WR; Jewett MA; Sun Y
    Lab Chip; 2011 Feb; 11(3):545-51. PubMed ID: 21079874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.