BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

921 related articles for article (PubMed ID: 19772360)

  • 1. pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy.
    Nam J; Won N; Jin H; Chung H; Kim S
    J Am Chem Soc; 2009 Sep; 131(38):13639-45. PubMed ID: 19772360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theragnostic pH-sensitive gold nanoparticles for the selective surface enhanced Raman scattering and photothermal cancer therapy.
    Jung S; Nam J; Hwang S; Park J; Hur J; Im K; Park N; Kim S
    Anal Chem; 2013 Aug; 85(16):7674-81. PubMed ID: 23883363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy.
    Van de Broek B; Devoogdt N; D'Hollander A; Gijs HL; Jans K; Lagae L; Muyldermans S; Maes G; Borghs G
    ACS Nano; 2011 Jun; 5(6):4319-28. PubMed ID: 21609027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods.
    Huang YF; Sefah K; Bamrungsap S; Chang HT; Tan W
    Langmuir; 2008 Oct; 24(20):11860-5. PubMed ID: 18817428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer modeling of the optical properties and heating of spherical gold and silica-gold nanoparticles for laser combined imaging and photothermal treatment.
    Pustovalov V; Astafyeva L; Jean B
    Nanotechnology; 2009 Jun; 20(22):225105. PubMed ID: 19433875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Mixed-charge self-assembled monolayers" as a facile method to design pH-induced aggregation of large gold nanoparticles for near-infrared photothermal cancer therapy.
    Li H; Liu X; Huang N; Ren K; Jin Q; Ji J
    ACS Appl Mater Interfaces; 2014; 6(21):18930-7. PubMed ID: 25286378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photothermal ablation of amyloid aggregates by gold nanoparticles.
    Triulzi RC; Dai Q; Zou J; Leblanc RM; Gu Q; Orbulescu J; Huo Q
    Colloids Surf B Biointerfaces; 2008 Jun; 63(2):200-8. PubMed ID: 18262396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of pH-induced aggregation of "smart" gold nanoparticles with photothermal optical coherence tomography.
    Xiao P; Li Q; Joo Y; Nam J; Hwang S; Song J; Kim S; Joo C; Kim KH
    Opt Lett; 2013 Nov; 38(21):4429-32. PubMed ID: 24177111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold hybrid nanoparticles for targeted phototherapy and cancer imaging.
    Kirui DK; Rey DA; Batt CA
    Nanotechnology; 2010 Mar; 21(10):105105. PubMed ID: 20154383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoshell-enabled photothermal cancer therapy: impending clinical impact.
    Lal S; Clare SE; Halas NJ
    Acc Chem Res; 2008 Dec; 41(12):1842-51. PubMed ID: 19053240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversibly pH-responsive gold nanoparticles and their applications for photothermal cancer therapy.
    Park S; Lee WJ; Park S; Choi D; Kim S; Park N
    Sci Rep; 2019 Dec; 9(1):20180. PubMed ID: 31882911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust ligand shells for biological applications of gold nanoparticles.
    Duchesne L; Gentili D; Comes-Franchini M; Fernig DG
    Langmuir; 2008 Dec; 24(23):13572-80. PubMed ID: 18991409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy.
    Boca SC; Potara M; Gabudean AM; Juhem A; Baldeck PL; Astilean S
    Cancer Lett; 2011 Dec; 311(2):131-40. PubMed ID: 21840122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-responsive assembly of gold nanoparticles and "spatiotemporally concerted" drug release for synergistic cancer therapy.
    Nam J; La WG; Hwang S; Ha YS; Park N; Won N; Jung S; Bhang SH; Ma YJ; Cho YM; Jin M; Han J; Shin JY; Wang EK; Kim SG; Cho SH; Yoo J; Kim BS; Kim S
    ACS Nano; 2013 Apr; 7(4):3388-402. PubMed ID: 23530622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible assembly and disassembly of gold nanoparticles directed by a zwitterionic polymer.
    Ding Y; Xia XH; Zhai HS
    Chemistry; 2007; 13(15):4197-202. PubMed ID: 17236228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer.
    Fazal S; Jayasree A; Sasidharan S; Koyakutty M; Nair SV; Menon D
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8080-9. PubMed ID: 24842534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large payloads of gold nanoparticles into the polyamine network core of stimuli-responsive PEGylated nanogels for selective and noninvasive cancer photothermal therapy.
    Nakamura T; Tamura A; Murotani H; Oishi M; Jinji Y; Matsuishi K; Nagasaki Y
    Nanoscale; 2010 May; 2(5):739-46. PubMed ID: 20648319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy absorption of gold nanoshells in hyperthermia therapy.
    Liu C; Mi CC; Li BQ
    IEEE Trans Nanobioscience; 2008 Sep; 7(3):206-14. PubMed ID: 18779101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient near-IR hyperthermia and intense nonlinear optical imaging contrast on the gold nanorod-in-shell nanostructures.
    Hu KW; Liu TM; Chung KY; Huang KS; Hsieh CT; Sun CK; Yeh CS
    J Am Chem Soc; 2009 Oct; 131(40):14186-7. PubMed ID: 19772320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon-induced photothermal cell-killing effect of gold colloidal nanoparticles on epithelial carcinoma cells.
    Abdulla-Al-Mamun M; Kusumoto Y; Mihata A; Islam MS; Ahmmad B
    Photochem Photobiol Sci; 2009 Aug; 8(8):1125-9. PubMed ID: 19639114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.