These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 19772557)

  • 1. BayesPeak: Bayesian analysis of ChIP-seq data.
    Spyrou C; Stark R; Lynch AG; Tavaré S
    BMC Bioinformatics; 2009 Sep; 10():299. PubMed ID: 19772557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BayesPeak--an R package for analysing ChIP-seq data.
    Cairns J; Spyrou C; Stark R; Smith ML; Lynch AG; Tavaré S
    Bioinformatics; 2011 Mar; 27(5):713-4. PubMed ID: 21245054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fully Bayesian hidden Ising model for ChIP-seq data analysis.
    Mo Q
    Biostatistics; 2012 Jan; 13(1):113-28. PubMed ID: 21914728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide localization of protein-DNA binding and histone modification by a Bayesian change-point method with ChIP-seq data.
    Xing H; Mo Y; Liao W; Zhang MQ
    PLoS Comput Biol; 2012; 8(7):e1002613. PubMed ID: 22844240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enricherator: A Bayesian Method for Inferring Regularized Genome-wide Enrichments from Sequencing Count Data.
    Schroeder JW; Freddolino PL
    J Mol Biol; 2024 Sep; 436(17):168567. PubMed ID: 38583516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovering transcription factor binding sites in highly repetitive regions of genomes with multi-read analysis of ChIP-Seq data.
    Chung D; Kuan PF; Li B; Sanalkumar R; Liang K; Bresnick EH; Dewey C; Keleş S
    PLoS Comput Biol; 2011 Jul; 7(7):e1002111. PubMed ID: 21779159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using MACS to identify peaks from ChIP-Seq data.
    Feng J; Liu T; Zhang Y
    Curr Protoc Bioinformatics; 2011 Jun; Chapter 2():2.14.1-2.14.14. PubMed ID: 21633945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QChIPat: a quantitative method to identify distinct binding patterns for two biological ChIP-seq samples in different experimental conditions.
    Liu B; Yi J; Sv A; Lan X; Ma Y; Huang TH; Leone G; Jin VX
    BMC Genomics; 2013; 14 Suppl 8(Suppl 8):S3. PubMed ID: 24564479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterising ChIP-seq binding patterns by model-based peak shape deconvolution.
    Mendoza-Parra MA; Nowicka M; Van Gool W; Gronemeyer H
    BMC Genomics; 2013 Nov; 14(1):834. PubMed ID: 24279297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unified Analysis of Multiple ChIP-Seq Datasets.
    Ma G; Babarinde IA; Zhuang Q; Hutchins AP
    Methods Mol Biol; 2021; 2198():451-465. PubMed ID: 32822050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Bayesian hidden Markov model for motif discovery through joint modeling of genomic sequence and ChIP-chip data.
    Gelfond JA; Gupta M; Ibrahim JG
    Biometrics; 2009 Dec; 65(4):1087-95. PubMed ID: 19210737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An effective approach for identification of in vivo protein-DNA binding sites from paired-end ChIP-Seq data.
    Wang C; Xu J; Zhang D; Wilson ZA; Zhang D
    BMC Bioinformatics; 2010 Feb; 11():81. PubMed ID: 20144209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. histoneHMM: Differential analysis of histone modifications with broad genomic footprints.
    Heinig M; Colomé-Tatché M; Taudt A; Rintisch C; Schafer S; Pravenec M; Hubner N; Vingron M; Johannes F
    BMC Bioinformatics; 2015 Feb; 16():60. PubMed ID: 25884684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping protein-DNA interactions using ChIP-sequencing.
    Massie CE; Mills IG
    Methods Mol Biol; 2012; 809():157-73. PubMed ID: 22113275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AREM: aligning short reads from ChIP-sequencing by expectation maximization.
    Newkirk D; Biesinger J; Chon A; Yokomori K; Xie X
    J Comput Biol; 2011 Nov; 18(11):1495-505. PubMed ID: 22035330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Empirical methods for controlling false positives and estimating confidence in ChIP-Seq peaks.
    Nix DA; Courdy SJ; Boucher KM
    BMC Bioinformatics; 2008 Dec; 9():523. PubMed ID: 19061503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. dPeak: high resolution identification of transcription factor binding sites from PET and SET ChIP-Seq data.
    Chung D; Park D; Myers K; Grass J; Kiley P; Landick R; Keleş S
    PLoS Comput Biol; 2013; 9(10):e1003246. PubMed ID: 24146601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A flexible and powerful bayesian hierarchical model for ChIP-Chip experiments.
    Gottardo R; Li W; Johnson WE; Liu XS
    Biometrics; 2008 Jun; 64(2):468-78. PubMed ID: 17888037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved ChIP-seq peak detection system for simultaneously identifying post-translational modified transcription factors by combinatorial fusion, using SUMOylation as an example.
    Cheng CY; Chu CH; Hsu HW; Hsu FR; Tang CY; Wang WC; Kung HJ; Chang PC
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S1. PubMed ID: 24564277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FisherMP: fully parallel algorithm for detecting combinatorial motifs from large ChIP-seq datasets.
    Zhang S; Liang Y; Wang X; Su Z; Chen Y
    DNA Res; 2019 Jun; 26(3):231-242. PubMed ID: 30957858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.