These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 19772575)

  • 1. Distinct changes in soybean xylem sap proteome in response to pathogenic and symbiotic microbe interactions.
    Subramanian S; Cho UH; Keyes C; Yu O
    BMC Plant Biol; 2009 Sep; 9():119. PubMed ID: 19772575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The promoters of two isoflavone synthase genes respond differentially to nodulation and defense signals in transgenic soybean roots.
    Subramanian S; Hu X; Lu G; Odelland JT; Yu O
    Plant Mol Biol; 2004 Mar; 54(5):623-39. PubMed ID: 15356384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The glycine max xylem sap and apoplast proteome.
    Djordjevic MA; Oakes M; Li DX; Hwang CH; Hocart CH; Gresshoff PM
    J Proteome Res; 2007 Sep; 6(9):3771-9. PubMed ID: 17696379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of systemic responses in soybean nodulation by xylem sap feeding and complete transcriptome sequencing reveal a novel component of the autoregulation pathway.
    Reid DE; Hayashi S; Lorenc M; Stiller J; Edwards D; Gresshoff PM; Ferguson BJ
    Plant Biotechnol J; 2012 Aug; 10(6):680-9. PubMed ID: 22624681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential regulation of defense-related proteins in soybean during compatible and incompatible interactions between Phytophthora sojae and soybean by comparative proteomic analysis.
    Jing M; Ma H; Li H; Guo B; Zhang X; Ye W; Wang H; Wang Q; Wang Y
    Plant Cell Rep; 2015 Jul; 34(7):1263-80. PubMed ID: 25906415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein and metabolite composition of xylem sap from field-grown soybeans (Glycine max).
    Krishnan HB; Natarajan SS; Bennett JO; Sicher RC
    Planta; 2011 May; 233(5):921-31. PubMed ID: 21246215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are phloem-derived amino acids the origin of the elevated malate concentration in the xylem sap following mineral N starvation in soybean?
    Vitor SC; do Amarante L; Sodek L
    Planta; 2018 Aug; 248(2):437-449. PubMed ID: 29767334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Nitrate, Ammonium, or Urea Changes the Concentrations of Ureides, Urea, Amino Acids and Other Metabolites in Xylem Sap and in the Organs of Soybean Plants (
    Ono Y; Fukasawa M; Sueyoshi K; Ohtake N; Sato T; Tanabata S; Toyota R; Higuchi K; Saito A; Ohyama T
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33925462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dual-targeted soybean protein is involved in Bradyrhizobium japonicum infection of soybean root hair and cortical cells.
    Libault M; Govindarajulu M; Berg RH; Ong YT; Puricelli K; Taylor CG; Xu D; Stacey G
    Mol Plant Microbe Interact; 2011 Sep; 24(9):1051-60. PubMed ID: 21815830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Introduction of the harpin
    Niu L; Yang J; Zhang J; He H; Xing G; Zhao Q; Guo D; Sui L; Zhong X; Yang X
    Transgenic Res; 2019 Apr; 28(2):257-266. PubMed ID: 30830582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyses of the xylem sap proteomes identified candidate Fusarium virguliforme proteinacious toxins.
    Abeysekara NS; Bhattacharyya MK
    PLoS One; 2014; 9(5):e93667. PubMed ID: 24845418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effector-Triggered Immunity Determines Host Genotype-Specific Incompatibility in Legume-Rhizobium Symbiosis.
    Yasuda M; Miwa H; Masuda S; Takebayashi Y; Sakakibara H; Okazaki S
    Plant Cell Physiol; 2016 Aug; 57(8):1791-800. PubMed ID: 27373538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive strategy for identifying long-distance mobile peptides in xylem sap.
    Okamoto S; Suzuki T; Kawaguchi M; Higashiyama T; Matsubayashi Y
    Plant J; 2015 Nov; 84(3):611-20. PubMed ID: 26333921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic effect on the model crop symbiosis Bradyrhizobium-soybean.
    Talano MA; Cejas RB; González PS; Agostini E
    Plant Physiol Biochem; 2013 Feb; 63():8-14. PubMed ID: 23228549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The plant immunity inducer pipecolic acid accumulates in the xylem sap and leaves of soybean seedlings following Fusarium virguliforme infection.
    Abeysekara NS; Swaminathan S; Desai N; Guo L; Bhattacharyya MK
    Plant Sci; 2016 Feb; 243():105-14. PubMed ID: 26795155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GmBTB/POZ, a novel BTB/POZ domain-containing nuclear protein, positively regulates the response of soybean to Phytophthora sojae infection.
    Zhang C; Gao H; Li R; Han D; Wang L; Wu J; Xu P; Zhang S
    Mol Plant Pathol; 2019 Jan; 20(1):78-91. PubMed ID: 30113770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum.
    Subramanian S; Stacey G; Yu O
    Plant J; 2006 Oct; 48(2):261-73. PubMed ID: 17018035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of nitrogen fixation after short-term flooding of the nodulated root system of soybean.
    Justino GC; Sodek L
    J Plant Physiol; 2013 Feb; 170(3):235-41. PubMed ID: 23158501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of L-type lectin receptor-like kinases involved in Glycine max-Phytophthora sojae interaction.
    Zeng M; Wan B; Wang L; Chen Z; Lin Y; Ye W; Wang Y; Wang Y
    Planta; 2021 Nov; 254(6):128. PubMed ID: 34812941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Diverse Stress-Responsive Xylem Sap Peptides in Soybean.
    Sin WC; Lam HM; Ngai SM
    Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.