BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 19772600)

  • 1. A comparison of classification methods for predicting Chronic Fatigue Syndrome based on genetic data.
    Huang LC; Hsu SY; Lin E
    J Transl Med; 2009 Sep; 7():81. PubMed ID: 19772600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of classification algorithms with wrapper-based feature selection for predicting osteoporosis outcome based on genetic factors in a taiwanese women population.
    Chang HW; Chiu YH; Kao HY; Yang CH; Ho WH
    Int J Endocrinol; 2013; 2013():850735. PubMed ID: 23401685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of single-nucleotide polymorphisms (SNPs) to distinguish gene expression subtypes of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME).
    Shimosako N; Kerr JR
    J Clin Pathol; 2014 Dec; 67(12):1078-83. PubMed ID: 25240059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Relative Power of Structural Genomic Variation versus SNPs in Explaining the Quantitative Trait Growth in the Marine Teleost
    Ruigrok M; Xue B; Catanach A; Zhang M; Jesson L; Davy M; Wellenreuther M
    Genes (Basel); 2022 Jun; 13(7):. PubMed ID: 35885912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated approach to infer causal associations among gene expression, genotype variation, and disease.
    Lee E; Cho S; Kim K; Park T
    Genomics; 2009 Oct; 94(4):269-77. PubMed ID: 19540336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convergent genomic studies identify association of GRIK2 and NPAS2 with chronic fatigue syndrome.
    Smith AK; Fang H; Whistler T; Unger ER; Rajeevan MS
    Neuropsychobiology; 2011; 64(4):183-94. PubMed ID: 21912186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early detection of Alzheimer's disease using single nucleotide polymorphisms analysis based on gradient boosting tree.
    Ahmed H; Soliman H; Elmogy M
    Comput Biol Med; 2022 Jul; 146():105622. PubMed ID: 35751201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms.
    Listgarten J; Damaraju S; Poulin B; Cook L; Dufour J; Driga A; Mackey J; Wishart D; Greiner R; Zanke B
    Clin Cancer Res; 2004 Apr; 10(8):2725-37. PubMed ID: 15102677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucocorticoid receptor polymorphisms and haplotypes associated with chronic fatigue syndrome.
    Rajeevan MS; Smith AK; Dimulescu I; Unger ER; Vernon SD; Heim C; Reeves WC
    Genes Brain Behav; 2007 Mar; 6(2):167-76. PubMed ID: 16740143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Bayesian approach to gene-gene and gene-environment interactions in chronic fatigue syndrome.
    Lin E; Hsu SY
    Pharmacogenomics; 2009 Jan; 10(1):35-42. PubMed ID: 19102713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systematic review of the association between fatigue and genetic polymorphisms.
    Wang T; Yin J; Miller AH; Xiao C
    Brain Behav Immun; 2017 May; 62():230-244. PubMed ID: 28089639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of complex human diseases from pathway-focused candidate markers by joint estimation of marker effects: case of chronic fatigue syndrome.
    Bhattacharjee M; Rajeevan MS; Sillanpää MJ
    Hum Genomics; 2015 Jun; 9(1):8. PubMed ID: 26063326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data mining and genetic algorithm based gene/SNP selection.
    Shah SC; Kusiak A
    Artif Intell Med; 2004 Jul; 31(3):183-96. PubMed ID: 15302085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combinations of single nucleotide polymorphisms in neuroendocrine effector and receptor genes predict chronic fatigue syndrome.
    Goertzel BN; Pennachin C; de Souza Coelho L; Gurbaxani B; Maloney EM; Jones JF
    Pharmacogenomics; 2006 Apr; 7(3):475-83. PubMed ID: 16610957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning-Based Method for Obesity Risk Evaluation Using Single-Nucleotide Polymorphisms Derived from Next-Generation Sequencing.
    Wang HY; Chang SC; Lin WY; Chen CH; Chiang SH; Huang KY; Chu BY; Lu JJ; Lee TY
    J Comput Biol; 2018 Dec; 25(12):1347-1360. PubMed ID: 30204480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upper-Limb Motion Recognition Based on Hybrid Feature Selection: Algorithm Development and Validation.
    Li Q; Liu Y; Zhu J; Chen Z; Liu L; Yang S; Zhu G; Zhu B; Li J; Jin R; Tao J; Chen L
    JMIR Mhealth Uhealth; 2021 Sep; 9(9):e24402. PubMed ID: 34473067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene expression profile exploration of a large dataset on chronic fatigue syndrome.
    Fang H; Xie Q; Boneva R; Fostel J; Perkins R; Tong W
    Pharmacogenomics; 2006 Apr; 7(3):429-40. PubMed ID: 16610953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved support vector machine-based diabetic readmission prediction.
    Cui S; Wang D; Wang Y; Yu PW; Jin Y
    Comput Methods Programs Biomed; 2018 Nov; 166():123-135. PubMed ID: 30415712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early prediction of reading disability using machine learning.
    Varol HA; Mani S; Compton DL; Fuchs LS; Fuchs D
    AMIA Annu Symp Proc; 2009 Nov; 2009():667-71. PubMed ID: 20351938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.