These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 19772600)
1. A comparison of classification methods for predicting Chronic Fatigue Syndrome based on genetic data. Huang LC; Hsu SY; Lin E J Transl Med; 2009 Sep; 7():81. PubMed ID: 19772600 [TBL] [Abstract][Full Text] [Related]
2. Comparison of classification algorithms with wrapper-based feature selection for predicting osteoporosis outcome based on genetic factors in a taiwanese women population. Chang HW; Chiu YH; Kao HY; Yang CH; Ho WH Int J Endocrinol; 2013; 2013():850735. PubMed ID: 23401685 [TBL] [Abstract][Full Text] [Related]
3. Use of single-nucleotide polymorphisms (SNPs) to distinguish gene expression subtypes of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). Shimosako N; Kerr JR J Clin Pathol; 2014 Dec; 67(12):1078-83. PubMed ID: 25240059 [TBL] [Abstract][Full Text] [Related]
4. The Relative Power of Structural Genomic Variation versus SNPs in Explaining the Quantitative Trait Growth in the Marine Teleost Ruigrok M; Xue B; Catanach A; Zhang M; Jesson L; Davy M; Wellenreuther M Genes (Basel); 2022 Jun; 13(7):. PubMed ID: 35885912 [TBL] [Abstract][Full Text] [Related]
5. An integrated approach to infer causal associations among gene expression, genotype variation, and disease. Lee E; Cho S; Kim K; Park T Genomics; 2009 Oct; 94(4):269-77. PubMed ID: 19540336 [TBL] [Abstract][Full Text] [Related]
6. Convergent genomic studies identify association of GRIK2 and NPAS2 with chronic fatigue syndrome. Smith AK; Fang H; Whistler T; Unger ER; Rajeevan MS Neuropsychobiology; 2011; 64(4):183-94. PubMed ID: 21912186 [TBL] [Abstract][Full Text] [Related]
7. Early detection of Alzheimer's disease using single nucleotide polymorphisms analysis based on gradient boosting tree. Ahmed H; Soliman H; Elmogy M Comput Biol Med; 2022 Jul; 146():105622. PubMed ID: 35751201 [TBL] [Abstract][Full Text] [Related]
8. Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms. Listgarten J; Damaraju S; Poulin B; Cook L; Dufour J; Driga A; Mackey J; Wishart D; Greiner R; Zanke B Clin Cancer Res; 2004 Apr; 10(8):2725-37. PubMed ID: 15102677 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests. Nguyen TT; Huang J; Wu Q; Nguyen T; Li M BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662 [TBL] [Abstract][Full Text] [Related]
10. Glucocorticoid receptor polymorphisms and haplotypes associated with chronic fatigue syndrome. Rajeevan MS; Smith AK; Dimulescu I; Unger ER; Vernon SD; Heim C; Reeves WC Genes Brain Behav; 2007 Mar; 6(2):167-76. PubMed ID: 16740143 [TBL] [Abstract][Full Text] [Related]
11. A Bayesian approach to gene-gene and gene-environment interactions in chronic fatigue syndrome. Lin E; Hsu SY Pharmacogenomics; 2009 Jan; 10(1):35-42. PubMed ID: 19102713 [TBL] [Abstract][Full Text] [Related]
12. A systematic review of the association between fatigue and genetic polymorphisms. Wang T; Yin J; Miller AH; Xiao C Brain Behav Immun; 2017 May; 62():230-244. PubMed ID: 28089639 [TBL] [Abstract][Full Text] [Related]
13. Prediction of complex human diseases from pathway-focused candidate markers by joint estimation of marker effects: case of chronic fatigue syndrome. Bhattacharjee M; Rajeevan MS; Sillanpää MJ Hum Genomics; 2015 Jun; 9(1):8. PubMed ID: 26063326 [TBL] [Abstract][Full Text] [Related]
14. Data mining and genetic algorithm based gene/SNP selection. Shah SC; Kusiak A Artif Intell Med; 2004 Jul; 31(3):183-96. PubMed ID: 15302085 [TBL] [Abstract][Full Text] [Related]
15. Combinations of single nucleotide polymorphisms in neuroendocrine effector and receptor genes predict chronic fatigue syndrome. Goertzel BN; Pennachin C; de Souza Coelho L; Gurbaxani B; Maloney EM; Jones JF Pharmacogenomics; 2006 Apr; 7(3):475-83. PubMed ID: 16610957 [TBL] [Abstract][Full Text] [Related]
16. Machine Learning-Based Method for Obesity Risk Evaluation Using Single-Nucleotide Polymorphisms Derived from Next-Generation Sequencing. Wang HY; Chang SC; Lin WY; Chen CH; Chiang SH; Huang KY; Chu BY; Lu JJ; Lee TY J Comput Biol; 2018 Dec; 25(12):1347-1360. PubMed ID: 30204480 [TBL] [Abstract][Full Text] [Related]
17. Upper-Limb Motion Recognition Based on Hybrid Feature Selection: Algorithm Development and Validation. Li Q; Liu Y; Zhu J; Chen Z; Liu L; Yang S; Zhu G; Zhu B; Li J; Jin R; Tao J; Chen L JMIR Mhealth Uhealth; 2021 Sep; 9(9):e24402. PubMed ID: 34473067 [TBL] [Abstract][Full Text] [Related]
18. Gene expression profile exploration of a large dataset on chronic fatigue syndrome. Fang H; Xie Q; Boneva R; Fostel J; Perkins R; Tong W Pharmacogenomics; 2006 Apr; 7(3):429-40. PubMed ID: 16610953 [TBL] [Abstract][Full Text] [Related]
19. An improved support vector machine-based diabetic readmission prediction. Cui S; Wang D; Wang Y; Yu PW; Jin Y Comput Methods Programs Biomed; 2018 Nov; 166():123-135. PubMed ID: 30415712 [TBL] [Abstract][Full Text] [Related]
20. Early prediction of reading disability using machine learning. Varol HA; Mani S; Compton DL; Fuchs LS; Fuchs D AMIA Annu Symp Proc; 2009 Nov; 2009():667-71. PubMed ID: 20351938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]