These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 19772902)
1. Brain creatine kinase activity is increased by chronic administration of paroxetine. Santos PM; Scaini G; Rezin GT; Benedet J; Rochi N; Jeremias GC; Carvalho-Silva M; Quevedo J; Streck EL Brain Res Bull; 2009 Dec; 80(6):327-30. PubMed ID: 19772902 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of Krebs cycle enzymes in the brain of rats after chronic administration of antidepressants. Scaini G; Santos PM; Benedet J; Rochi N; Gomes LM; Borges LS; Rezin GT; Pezente DP; Quevedo J; Streck EL Brain Res Bull; 2010 May; 82(3-4):224-7. PubMed ID: 20347017 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of brain creatine kinase activity in an animal model of mania induced by ouabain. Freitas TP; Scaini G; Corrêa C; Santos PM; Ferreira GK; Rezin GT; Moretti M; Valvassori SS; Quevedo J; Streck EL J Neural Transm (Vienna); 2010 Feb; 117(2):149-53. PubMed ID: 19911114 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the effects of antidepressants on norepinephrine and serotonin concentrations in the rat frontal cortex: an in-vivo microdialysis study. Beyer CE; Boikess S; Luo B; Dawson LA J Psychopharmacol; 2002 Dec; 16(4):297-304. PubMed ID: 12503828 [TBL] [Abstract][Full Text] [Related]
5. Effects of olanzapine, fluoxetine and olanzapine/fluoxetine on creatine kinase activity in rat brain. Agostinho FR; Scaini G; Ferreira GK; Jeremias IC; Réus GZ; Rezin GT; Castro AA; Zugno AI; Quevedo J; Streck EL Brain Res Bull; 2009 Dec; 80(6):337-40. PubMed ID: 19748553 [TBL] [Abstract][Full Text] [Related]
6. Presynaptic Ca2+/calmodulin-dependent protein kinase II: autophosphorylation and activity increase in the hippocampus after long-term blockade of serotonin reuptake. Popoli M; Vocaturo C; Perez J; Smeraldi E; Racagni G Mol Pharmacol; 1995 Oct; 48(4):623-9. PubMed ID: 7476887 [TBL] [Abstract][Full Text] [Related]
7. Differential Potency of Venlafaxine, Paroxetine, and Atomoxetine to Inhibit Serotonin and Norepinephrine Reuptake in Patients With Major Depressive Disorder. Aldosary F; Norris S; Tremblay P; James JS; Ritchie JC; Blier P Int J Neuropsychopharmacol; 2022 Apr; 25(4):283-292. PubMed ID: 34958348 [TBL] [Abstract][Full Text] [Related]
8. Activity of mitochondrial respiratory chain is increased by chronic administration of antidepressants. Scaini G; Maggi DD; De-Nês BT; Gonçalves CL; Ferreira GK; Teodorak BP; Bez GD; Ferreira GC; Schuck PF; Quevedo J; Streck EL Acta Neuropsychiatr; 2011 Jun; 23(3):112-8. PubMed ID: 26952897 [TBL] [Abstract][Full Text] [Related]
9. Blockade of 5-hydroxytryptamine and noradrenaline uptake by venlafaxine: a comparative study with paroxetine and desipramine. Béïque JC; de Montigny C; Blier P; Debonnel G Br J Pharmacol; 1998 Oct; 125(3):526-32. PubMed ID: 9806336 [TBL] [Abstract][Full Text] [Related]
10. Venlafaxine: in vitro inhibition of CYP2D6 dependent imipramine and desipramine metabolism; comparative studies with selected SSRIs, and effects on human hepatic CYP3A4, CYP2C9 and CYP1A2. Ball SE; Ahern D; Scatina J; Kao J Br J Clin Pharmacol; 1997 Jun; 43(6):619-26. PubMed ID: 9205822 [TBL] [Abstract][Full Text] [Related]
11. Allosteric modulation of the effect of escitalopram, paroxetine and fluoxetine: in-vitro and in-vivo studies. Mansari ME; Wiborg O; Mnie-Filali O; Benturquia N; Sánchez C; Haddjeri N Int J Neuropsychopharmacol; 2007 Feb; 10(1):31-40. PubMed ID: 16448580 [TBL] [Abstract][Full Text] [Related]
12. Effects of acute treatment with paroxetine, citalopram and venlafaxine in vivo on noradrenaline and serotonin outflow: a microdialysis study in Swiss mice. David DJ; Bourin M; Jego G; Przybylski C; Jolliet P; Gardier AM Br J Pharmacol; 2003 Nov; 140(6):1128-36. PubMed ID: 14530210 [TBL] [Abstract][Full Text] [Related]
13. Venlafaxine: acute and chronic effects on 5-hydroxytryptamine levels in rat brain in vivo. Gur E; Dremencov E; Lerer B; Newman ME Eur J Pharmacol; 1999 May; 372(1):17-24. PubMed ID: 10374710 [TBL] [Abstract][Full Text] [Related]
14. Association of changes in norepinephrine and serotonin transporter expression with the long-term behavioral effects of antidepressant drugs. Zhao Z; Zhang HT; Bootzin E; Millan MJ; O'Donnell JM Neuropsychopharmacology; 2009 May; 34(6):1467-81. PubMed ID: 18923402 [TBL] [Abstract][Full Text] [Related]
15. In vivo effect of antidepressants on [3H]paroxetine binding to serotonin transporters in rat brain. Nadgir SM; Malviya M Neurochem Res; 2008 Nov; 33(11):2250-6. PubMed ID: 18437564 [TBL] [Abstract][Full Text] [Related]
16. Venlafaxine: discrepancy between in vivo 5-HT and NE reuptake blockade and affinity for reuptake sites. Béïque JC; de Montigny C; Blier P; Debonnel G Synapse; 1999 Jun; 32(3):198-211. PubMed ID: 10340630 [TBL] [Abstract][Full Text] [Related]
17. 20( Zhu Z; Cheng Y; Han X; Wang T; Zhang H; Yao Q; Chen F; Gu L; Yang D; Chen L; Zhao Y J Agric Food Chem; 2024 May; 72(18):10376-10390. PubMed ID: 38661058 [TBL] [Abstract][Full Text] [Related]
18. Sequential changes in BDNF mRNA expression and synaptic levels of AMPA receptor subunits in rat hippocampus after chronic antidepressant treatment. Martínez-Turrillas R; Del Río J; Frechilla D Neuropharmacology; 2005 Dec; 49(8):1178-88. PubMed ID: 16143352 [TBL] [Abstract][Full Text] [Related]
19. The role of alpha1- and alpha2-adrenoreceptors on venlafaxine-induced elevation of extracellular serotonin, noradrenaline and dopamine levels in the rat prefrontal cortex and hippocampus. Weikop P; Kehr J; Scheel-Krüger J J Psychopharmacol; 2004 Sep; 18(3):395-403. PubMed ID: 15358984 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of the neuropharmacodynamics of paroxetine in vivo utilizing microdialysis. Ramaiya A; Johnson JH; Karnes HT J Pharm Sci; 1997 Dec; 86(12):1497-500. PubMed ID: 9423168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]