These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
381 related articles for article (PubMed ID: 19772966)
1. Hollow PtCo nanospheres supported on multi-walled carbon nanotubes for methanol electrooxidation. Guo DJ; Cui SK J Colloid Interface Sci; 2009 Dec; 340(1):53-7. PubMed ID: 19772966 [TBL] [Abstract][Full Text] [Related]
2. Highly dispersed Pt nanoparticles immobilized on 1,4-benzenediamine-modified multi-walled carbon nanotube for methanol oxidation. Cui SK; Guo DJ J Colloid Interface Sci; 2009 May; 333(1):300-3. PubMed ID: 19232631 [TBL] [Abstract][Full Text] [Related]
3. Pt-Ru/CeO2/carbon nanotube nanocomposites: an efficient electrocatalyst for direct methanol fuel cells. Sun Z; Wang X; Liu Z; Zhang H; Yu P; Mao L Langmuir; 2010 Jul; 26(14):12383-9. PubMed ID: 20486650 [TBL] [Abstract][Full Text] [Related]
4. Platinum/mesoporous WO3 as a carbon-free electrocatalyst with enhanced electrochemical activity for methanol oxidation. Cui X; Shi J; Chen H; Zhang L; Guo L; Gao J; Li J J Phys Chem B; 2008 Sep; 112(38):12024-31. PubMed ID: 18754636 [TBL] [Abstract][Full Text] [Related]
5. PtRu/carbon nanotube nanocomposite synthesized in supercritical fluid: a novel electrocatalyst for direct methanol fuel cells. Lin Y; Cui X; Yen CH; Wai CM Langmuir; 2005 Nov; 21(24):11474-9. PubMed ID: 16285828 [TBL] [Abstract][Full Text] [Related]
6. Electrocatalytic oxidation of ethylene glycol on Pt and Pt-Ru nanoparticles modified multi-walled carbon nanotubes. Selvaraj V; Vinoba M; Alagar M J Colloid Interface Sci; 2008 Jun; 322(2):537-44. PubMed ID: 18402968 [TBL] [Abstract][Full Text] [Related]
7. Temperature dependence of oxygen reduction reaction activity at stabilized Pt skin-PtCo alloy/graphitized carbon black catalysts prepared by a modified nanocapsule method. Okaya K; Yano H; Kakinuma K; Watanabe M; Uchida H ACS Appl Mater Interfaces; 2012 Dec; 4(12):6982-91. PubMed ID: 23234364 [TBL] [Abstract][Full Text] [Related]
8. Nanostructure PtRu/MWNTs as anode catalysts prepared in a vacuum for direct methanol oxidation. Gu YJ; Wong WT Langmuir; 2006 Dec; 22(26):11447-52. PubMed ID: 17154638 [TBL] [Abstract][Full Text] [Related]
9. Electrocatalytic properties of platinum nanoparticles supported on fluorine tin dioxide/multi-walled carbon nanotube composites for methanol electrooxidation in acidic medium. Guo DJ; Jing ZH J Colloid Interface Sci; 2011 Jul; 359(1):257-60. PubMed ID: 21489549 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. Tian ZQ; Jiang SP; Liang YM; Shen PK J Phys Chem B; 2006 Mar; 110(11):5343-50. PubMed ID: 16539467 [TBL] [Abstract][Full Text] [Related]
11. PtRu nanoparticles supported on 1-aminopyrene-functionalized multiwalled carbon nanotubes and their electrocatalytic activity for methanol oxidation. Wang S; Wang X; Jiang SP Langmuir; 2008 Sep; 24(18):10505-12. PubMed ID: 18690733 [TBL] [Abstract][Full Text] [Related]
12. Platinum/Carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells. Lin Y; Cui X; Yen C; Wai CM J Phys Chem B; 2005 Aug; 109(30):14410-5. PubMed ID: 16852813 [TBL] [Abstract][Full Text] [Related]
13. Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets. Pumera M Langmuir; 2007 May; 23(11):6453-8. PubMed ID: 17455966 [TBL] [Abstract][Full Text] [Related]
14. Preparation and characterization of PtRu nanoparticles supported on nitrogen-doped porous carbon for electrooxidation of methanol. Liu Z; Su F; Zhang X; Tay SW ACS Appl Mater Interfaces; 2011 Oct; 3(10):3824-30. PubMed ID: 21919500 [TBL] [Abstract][Full Text] [Related]
15. A general method for the rapid synthesis of hollow metallic or bimetallic nanoelectrocatalysts with urchinlike morphology. Guo S; Dong S; Wang E Chemistry; 2008; 14(15):4689-95. PubMed ID: 18384027 [TBL] [Abstract][Full Text] [Related]
16. Preparation and electrocatalytic properties of Pt-SiO2 nanocatalysts for ethanol electrooxidation. Liu B; Chen JH; Zhong XX; Cui KZ; Zhou HH; Kuang YF J Colloid Interface Sci; 2007 Mar; 307(1):139-44. PubMed ID: 17187816 [TBL] [Abstract][Full Text] [Related]
17. Enhanced oxygen reduction at Pd catalytic nanoparticles dispersed onto heteropolytungstate-assembled poly(diallyldimethylammonium)-functionalized carbon nanotubes. Wang D; Lu S; Kulesza PJ; Li CM; De Marco R; Jiang SP Phys Chem Chem Phys; 2011 Mar; 13(10):4400-10. PubMed ID: 21249246 [TBL] [Abstract][Full Text] [Related]
18. The synthesis of a copper/multi-walled carbon nanotube hybrid nanowire in a microfluidic reactor. Peng Y; Chen Q Nanotechnology; 2009 Jun; 20(23):235606. PubMed ID: 19451676 [TBL] [Abstract][Full Text] [Related]
19. Polyelectrolyte functionalized carbon nanotubes as a support for noble metal electrocatalysts and their activity for methanol oxidation. Wang S; Jiang SP; Wang X Nanotechnology; 2008 Jul; 19(26):265601. PubMed ID: 21828682 [TBL] [Abstract][Full Text] [Related]
20. Combinatorial optimization of ternary Pt alloy catalysts for the electrooxidation of methanol. Strasser P J Comb Chem; 2008; 10(2):216-24. PubMed ID: 18257541 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]