BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 19773264)

  • 1. Generation of mesenchymal stromal cells in the presence of platelet lysate: a phenotypic and functional comparison of umbilical cord blood- and bone marrow-derived progenitors.
    Avanzini MA; Bernardo ME; Cometa AM; Perotti C; Zaffaroni N; Novara F; Visai L; Moretta A; Del Fante C; Villa R; Ball LM; Fibbe WE; Maccario R; Locatelli F
    Haematologica; 2009 Dec; 94(12):1649-60. PubMed ID: 19773264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of in vitro expansion of human multipotent mesenchymal stromal cells for cell-therapy approaches: further insights in the search for a fetal calf serum substitute.
    Bernardo ME; Avanzini MA; Perotti C; Cometa AM; Moretta A; Lenta E; Del Fante C; Novara F; de Silvestri A; Amendola G; Zuffardi O; Maccario R; Locatelli F
    J Cell Physiol; 2007 Apr; 211(1):121-30. PubMed ID: 17187344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical-grade mesenchymal stromal cells produced under various good manufacturing practice processes differ in their immunomodulatory properties: standardization of immune quality controls.
    Menard C; Pacelli L; Bassi G; Dulong J; Bifari F; Bezier I; Zanoncello J; Ricciardi M; Latour M; Bourin P; Schrezenmeier H; Sensebé L; Tarte K; Krampera M
    Stem Cells Dev; 2013 Jun; 22(12):1789-801. PubMed ID: 23339531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulatory-compliant conditions during cell product manufacturing enhance in vitro immunomodulatory properties of infrapatellar fat pad-derived mesenchymal stem/stromal cells.
    Kouroupis D; Bowles AC; Greif DN; Leñero C; Best TM; Kaplan LD; Correa D
    Cytotherapy; 2020 Nov; 22(11):677-689. PubMed ID: 32723596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy.
    Li CY; Wu XY; Tong JB; Yang XX; Zhao JL; Zheng QF; Zhao GB; Ma ZJ
    Stem Cell Res Ther; 2015 Apr; 6(1):55. PubMed ID: 25884704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput immunophenotypic characterization of bone marrow- and cord blood-derived mesenchymal stromal cells reveals common and differentially expressed markers: identification of angiotensin-converting enzyme (CD143) as a marker differentially expressed between adult and perinatal tissue sources.
    Amati E; Perbellini O; Rotta G; Bernardi M; Chieregato K; Sella S; Rodeghiero F; Ruggeri M; Astori G
    Stem Cell Res Ther; 2018 Jan; 9(1):10. PubMed ID: 29338788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotypical and functional characteristics of mesenchymal stem cells from bone marrow: comparison of culture using different media supplemented with human platelet lysate or fetal bovine serum.
    Ben Azouna N; Jenhani F; Regaya Z; Berraeis L; Ben Othman T; Ducrocq E; Domenech J
    Stem Cell Res Ther; 2012 Feb; 3(1):6. PubMed ID: 22333342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesenchymal stromal cells promote or suppress the proliferation of T lymphocytes from cord blood and peripheral blood: the importance of low cell ratio and role of interleukin-6.
    Najar M; Rouas R; Raicevic G; Boufker HI; Lewalle P; Meuleman N; Bron D; Toungouz M; Martiat P; Lagneaux L
    Cytotherapy; 2009; 11(5):570-83. PubMed ID: 19565371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially.
    Prasanna SJ; Gopalakrishnan D; Shankar SR; Vasandan AB
    PLoS One; 2010 Feb; 5(2):e9016. PubMed ID: 20126406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesenchymal stem cells expanded in human platelet lysate display a decreased inhibitory capacity on T- and NK-cell proliferation and function.
    Abdelrazik H; Spaggiari GM; Chiossone L; Moretta L
    Eur J Immunol; 2011 Nov; 41(11):3281-90. PubMed ID: 21874650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potency testing of mesenchymal stromal cell growth expanded in human platelet lysate from different human tissues.
    Fazzina R; Iudicone P; Fioravanti D; Bonanno G; Totta P; Zizzari IG; Pierelli L
    Stem Cell Res Ther; 2016 Aug; 7(1):122. PubMed ID: 27557940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autologous Platelet Lysate Does Not Enhance Chondrogenic Differentiation of Equine Bone Marrow-Derived Mesenchymal Stromal Cells Despite Increased TGF-β1 Concentration.
    Chapman HS; Gale AL; Dodson ME; Linardi RL; Ortved KF
    Stem Cells Dev; 2020 Feb; 29(3):144-155. PubMed ID: 31802705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone-forming capacity of mesenchymal stromal cells when cultured in the presence of human platelet lysate as substitute for fetal bovine serum.
    Prins HJ; Rozemuller H; Vonk-Griffioen S; Verweij VG; Dhert WJ; Slaper-Cortenbach IC; Martens AC
    Tissue Eng Part A; 2009 Dec; 15(12):3741-51. PubMed ID: 19519274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies.
    Martin-Rendon E; Sweeney D; Lu F; Girdlestone J; Navarrete C; Watt SM
    Vox Sang; 2008 Aug; 95(2):137-48. PubMed ID: 18557828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of mesenchymal stromal cells derived from full-term umbilical cord blood.
    Manca MF; Zwart I; Beo J; Palasingham R; Jen LS; Navarrete R; Girdlestone J; Navarrete CV
    Cytotherapy; 2008; 10(1):54-68. PubMed ID: 18202975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aging of bone marrow- and umbilical cord-derived mesenchymal stromal cells during expansion.
    de Witte SFH; Lambert EE; Merino A; Strini T; Douben HJCW; O'Flynn L; Elliman SJ; de Klein AJEMM; Newsome PN; Baan CC; Hoogduijn MJ
    Cytotherapy; 2017 Jul; 19(7):798-807. PubMed ID: 28462821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the mesenchymal stromal cell source on the hematopoietic supportive capacity of umbilical cord blood-derived CD34
    Bucar S; Branco ADM; Mata MF; Milhano JC; Caramalho Í; Cabral JMS; Fernandes-Platzgummer A; da Silva CL
    Stem Cell Res Ther; 2021 Jul; 12(1):399. PubMed ID: 34256848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue.
    Zhang X; Hirai M; Cantero S; Ciubotariu R; Dobrila L; Hirsh A; Igura K; Satoh H; Yokomi I; Nishimura T; Yamaguchi S; Yoshimura K; Rubinstein P; Takahashi TA
    J Cell Biochem; 2011 Apr; 112(4):1206-18. PubMed ID: 21312238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ex vivo expansion of T, NK and CD34+ cells from umbilical cord blood.
    Wei YM; Cao Q; Zhou HY; Xia R; Lan JC; Meng FY; Bai H
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2005 Dec; 13(6):1076-81. PubMed ID: 16403284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ex vivo expansion of CD56+ cytotoxic cells from human umbilical cord blood.
    Condiotti R; Zakai YB; Barak V; Nagler A
    Exp Hematol; 2001 Jan; 29(1):104-13. PubMed ID: 11164111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.