BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 19773357)

  • 1. KCNE4 suppresses Kv1.3 currents by modulating trafficking, surface expression and channel gating.
    Solé L; Roura-Ferrer M; Pérez-Verdaguer M; Oliveras A; Calvo M; Fernández-Fernández JM; Felipe A
    J Cell Sci; 2009 Oct; 122(Pt 20):3738-48. PubMed ID: 19773357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KChIP2 modulates the cell surface expression of Kv 1.5-encoded K(+) channels.
    Li H; Guo W; Mellor RL; Nerbonne JM
    J Mol Cell Cardiol; 2005 Jul; 39(1):121-32. PubMed ID: 15878168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The C-terminal domain of Kv1.3 regulates functional interactions with the KCNE4 subunit.
    Solé L; Roig SR; Vallejo-Gracia A; Serrano-Albarrás A; Martínez-Mármol R; Tamkun MM; Felipe A
    J Cell Sci; 2016 Nov; 129(22):4265-4277. PubMed ID: 27802162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accessory Kvbeta1 subunits differentially modulate the functional expression of voltage-gated K+ channels in mouse ventricular myocytes.
    Aimond F; Kwak SP; Rhodes KJ; Nerbonne JM
    Circ Res; 2005 Mar; 96(4):451-8. PubMed ID: 15662035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The calmodulin-binding tetraleucine motif of KCNE4 is responsible for association with Kv1.3.
    Solé L; Roig SR; Sastre D; Vallejo-Gracia A; Serrano-Albarrás A; Ferrer-Montiel A; Fernández-Ballester G; Tamkun MM; Felipe A
    FASEB J; 2019 Jul; 33(7):8263-8279. PubMed ID: 30969795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calmodulin-dependent KCNE4 dimerization controls membrane targeting.
    Roig SR; Solé L; Cassinelli S; Colomer-Molera M; Sastre D; Serrano-Novillo C; Serrano-Albarrás A; Lillo MP; Tamkun MM; Felipe A
    Sci Rep; 2021 Jul; 11(1):14046. PubMed ID: 34234241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Consequences of the Variable Stoichiometry of the Kv1.3-KCNE4 Complex.
    Solé L; Sastre D; Colomer-Molera M; Vallejo-Gracia A; Roig SR; Pérez-Verdaguer M; Lillo P; Tamkun MM; Felipe A
    Cells; 2020 May; 9(5):. PubMed ID: 32370164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kv1 potassium channel C-terminus constant HRETE region: arginine substitution affects surface protein level and conductance level of subfamily members differentially.
    Zhu J; Gomez B; Watanabe I; Thornhill WB
    Mol Membr Biol; 2007; 24(3):194-205. PubMed ID: 17520476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NH2-terminal inactivation peptide binding to C-type-inactivated Kv channels.
    Kurata HT; Wang Z; Fedida D
    J Gen Physiol; 2004 May; 123(5):505-20. PubMed ID: 15078918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. KCNE4-dependent functional consequences of Kv1.3-related leukocyte physiology.
    Vallejo-Gracia A; Sastre D; Colomer-Molera M; Solé L; Navarro-Pérez M; Capera J; Roig SR; Pedrós-Gámez O; Estadella I; Szilágyi O; Panyi G; Hajdú P; Felipe A
    Sci Rep; 2021 Jul; 11(1):14632. PubMed ID: 34272451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ins and outs of cardiac voltage-gated potassium channels.
    Pongs O
    Curr Opin Pharmacol; 2009 Jun; 9(3):311-5. PubMed ID: 19394895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Messenger RNA and protein expression analysis of voltage-gated potassium channels in the brain of Abeta(25-35)-treated rats.
    Pan Y; Xu X; Tong X; Wang X
    J Neurosci Res; 2004 Jul; 77(1):94-9. PubMed ID: 15197742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex expression and localization of inactivating Kv channels in cultured hippocampal astrocytes.
    Bekar LK; Loewen ME; Cao K; Sun X; Leis J; Wang R; Forsyth GW; Walz W
    J Neurophysiol; 2005 Mar; 93(3):1699-709. PubMed ID: 15738276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular determinants of voltage-gated potassium currents in vascular smooth muscle.
    Cox RH
    Cell Biochem Biophys; 2005; 42(2):167-95. PubMed ID: 15858231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The glycosylation state of Kv1.2 potassium channels affects trafficking, gating, and simulated action potentials.
    Watanabe I; Zhu J; Sutachan JJ; Gottschalk A; Recio-Pinto E; Thornhill WB
    Brain Res; 2007 May; 1144():1-18. PubMed ID: 17324383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kv1.5 surface expression is modulated by retrograde trafficking of newly endocytosed channels by the dynein motor.
    Choi WS; Khurana A; Mathur R; Viswanathan V; Steele DF; Fedida D
    Circ Res; 2005 Aug; 97(4):363-71. PubMed ID: 16051887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KCNE4 is an inhibitory subunit to Kv1.1 and Kv1.3 potassium channels.
    Grunnet M; Rasmussen HB; Hay-Schmidt A; Rosenstierne M; Klaerke DA; Olesen SP; Jespersen T
    Biophys J; 2003 Sep; 85(3):1525-37. PubMed ID: 12944270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered K+ channel subunit composition following hormone induction of Kv1.5 gene expression.
    Takimoto K; Levitan ES
    Biochemistry; 1996 Nov; 35(45):14149-56. PubMed ID: 8916900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic inhibition of the maximum conductance of Kv1.5 channels by extracellular K+ reduction and acidification.
    Fedida D; Zhang S; Kwan DC; Eduljee C; Kehl SJ
    Cell Biochem Biophys; 2005; 43(2):231-42. PubMed ID: 16049348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of voltage-gated K+ channels in human atrium.
    Bertaso F; Sharpe CC; Hendry BM; James AF
    Basic Res Cardiol; 2002 Nov; 97(6):424-33. PubMed ID: 12395204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.