These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19774030)

  • 1. Two-dimensional imaging of molecular hydrogen in H(2)-air diffusion flames using two-photon laser-induced fluorescence.
    Lempert W; Diskin G; Kumar V; Glesk I; Miles R
    Opt Lett; 1991 May; 16(9):660-2. PubMed ID: 19774030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CH and NO planar laser-induced fluorescence and Rayleigh-scattering in turbulent flames using a multimode optical parametric oscillator.
    Miller JD; Tröger JW; Engel SR; Seeger T; Leipertz A; Meyer TR
    Appl Opt; 2021 Jan; 60(1):98-108. PubMed ID: 33362084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous single-shot imaging of H and O atoms in premixed turbulent flames using femtosecond two-photon laser-induced fluorescence.
    Ruchkina M; Raveesh M; Dominguez A; Bood J; Brackmann C
    Opt Express; 2023 Apr; 31(8):12932-12943. PubMed ID: 37157442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photochemical effects in two-photon-excited fluorescence detection of atomic oxygen in flames.
    Goldsmith JE
    Appl Opt; 1987 Sep; 26(17):3566-72. PubMed ID: 20490104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser-induced fluorescence detection of hot molecular oxygen in flames using an alexandrite laser.
    Kiefer J; Zhou B; Zetterberg J; Li Z; Alden M
    Appl Spectrosc; 2014; 68(11):1266-73. PubMed ID: 25279538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman scattering measurements in flames using a tunable KrF excimer laser.
    Wehrmeyer JA; Cheng TS; Pitz RW
    Appl Opt; 1992 Apr; 31(10):1495-504. PubMed ID: 20720783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser imaging system for determination of three-dimensional scalar gradients in turbulent flames.
    Karpetis AN; Settersten TB; Schefer RW; Barlow RS
    Opt Lett; 2004 Feb; 29(4):355-7. PubMed ID: 14971751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of nanosecond and picosecond excitation for interference-free two-photon laser-induced fluorescence detection of atomic hydrogen in flames.
    Kulatilaka WD; Patterson BD; Frank JH; Settersten TB
    Appl Opt; 2008 Sep; 47(26):4672-83. PubMed ID: 18784770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Line Raman, Rayleigh, and laser-induced predissociation fluorescence technique for combustion with a tunable KrF excimer laser.
    Mansour MS; Chen YC
    Appl Opt; 1996 Jul; 35(21):4252-60. PubMed ID: 21102834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flame flow tagging velocimetry with 193-nm H2O photodissociation.
    Wehrmeyer JA; Ribarov LA; Oguss DA; Pitz RW
    Appl Opt; 1999 Nov; 38(33):6912-7. PubMed ID: 18324234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive CO detection in flames using femtosecond two-photon laser-induced fluorescence.
    Li B; Li X; Zhang D; Gao Q; Yao M; Li Z
    Opt Express; 2017 Oct; 25(21):25809-25818. PubMed ID: 29041244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-Induced Photofragmentation Fluorescence Imaging of Alkali Compounds in Flames.
    Leffler T; Brackmann C; Aldén M; Li Z
    Appl Spectrosc; 2017 Jun; 71(6):1289-1299. PubMed ID: 28534679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative planar temperature imaging in turbulent non-premixed flames using filtered Rayleigh scattering.
    McManus TA; Sutton JA
    Appl Opt; 2019 Apr; 58(11):2936-2947. PubMed ID: 31044899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative technique for imaging mixture fraction, temperature, and the hydroxyl radical in turbulent diffusion flames.
    Kelman JB; Masri AR
    Appl Opt; 1997 May; 36(15):3506-14. PubMed ID: 18253369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames.
    Frank JH; Chen X; Patterson BD; Settersten TB
    Appl Opt; 2004 Apr; 43(12):2588-97. PubMed ID: 15119630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence.
    Ni T; Pinson JA; Gupta S; Santoro RJ
    Appl Opt; 1995 Oct; 34(30):7083-91. PubMed ID: 21060570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames.
    Meyer TR; Roy S; Belovich VM; Corporan E; Gord JR
    Appl Opt; 2005 Jan; 44(3):445-54. PubMed ID: 15717834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of 266-nm and 355-nm Nd:YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by raman scattering.
    Egermann J; Seeger T; Leipertz A
    Appl Opt; 2004 Oct; 43(29):5564-74. PubMed ID: 15508615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualization of CN by the use of planar laser-induced fluorescence in a cross section of an unseeded turbulent CH(4)-air flame.
    Hirano A; Tsujishita M
    Appl Opt; 1994 Nov; 33(33):7777-80. PubMed ID: 20962989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-pulse, simultaneous multipoint multispecies Raman measurements in turbulent nonpremixed jet flames.
    Nandula SP; Brown TM; Pitz RW; Debarber PA
    Opt Lett; 1994 Mar; 19(6):414-6. PubMed ID: 19829659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.