BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 1977417)

  • 1. Autoradiographic analysis of regional alterations in brain receptors following chronic administration and withdrawal of typical and atypical neuroleptics in rats.
    See RE; Toga AW; Ellison G
    J Neural Transm Gen Sect; 1990; 82(2):93-109. PubMed ID: 1977417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dopamine receptor subtypes: differential regulation after 8 months treatment with antipsychotic drugs.
    Florijn WJ; Tarazi FI; Creese I
    J Pharmacol Exp Ther; 1997 Feb; 280(2):561-9. PubMed ID: 9023264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential regulation of dopamine receptors after chronic typical and atypical antipsychotic drug treatment.
    Tarazi FI; Florijn WJ; Creese I
    Neuroscience; 1997 Jun; 78(4):985-96. PubMed ID: 9174067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of ionotropic glutamate receptors following subchronic and chronic treatment with typical and atypical antipsychotics.
    Tarazi FI; Florijn WJ; Creese I
    Psychopharmacology (Berl); 1996 Dec; 128(4):371-9. PubMed ID: 8986008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of chronic neuroleptic treatments on dopamine D1 and D2 receptors: homogenate binding and autoradiographic studies.
    Huang N; Ase AR; Hébert C; van Gelder NM; Reader TA
    Neurochem Int; 1997 Mar; 30(3):277-90. PubMed ID: 9041559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of acute and chronic treatments with clozapine and haloperidol on serotonin (5-HT2) and dopamine (D2) receptors in the rat brain.
    Wilmot CA; Szczepanik AM
    Brain Res; 1989 May; 487(2):288-98. PubMed ID: 2525063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic neuroleptic treatment in rats produces persisting changes in GABAA and dopamine D-2, but not dopamine D-1 receptors.
    See RE; Aravagiri M; Ellison GD
    Life Sci; 1989; 44(3):229-36. PubMed ID: 2536879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential alterations in striatal dopamine receptor sensitivity induced by repeated administration of clinically equivalent doses of haloperidol, sulpiride or clozapine in rats.
    Rupniak NM; Kilpatrick G; Hall MD; Jenner P; Marsden CD
    Psychopharmacology (Berl); 1984; 84(4):512-9. PubMed ID: 6441952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of chronic neuroleptic treatment on agonist affinity states of the dopamine-D2 receptor in the rat brain.
    Hall H; Sällemark M
    Pharmacol Toxicol; 1987 May; 60(5):359-63. PubMed ID: 2886988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuroleptics increase c-fos expression in the forebrain: contrasting effects of haloperidol and clozapine.
    Robertson GS; Fibiger HC
    Neuroscience; 1992; 46(2):315-28. PubMed ID: 1347406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subchronic administration of clozapine, but not haloperidol or metoclopramide, decreases dopamine D2 receptor messenger RNA levels in the nucleus accumbens and caudate-putamen in rats.
    See RE; Lynch AM; Sorg BA
    Neuroscience; 1996 May; 72(1):99-104. PubMed ID: 8730709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic haloperidol and clozapine administration increases the number of cortical NMDA receptors in rats.
    Ossowska K; Pietraszek M; Wardas J; Nowak G; Wolfarth S
    Naunyn Schmiedebergs Arch Pharmacol; 1999 Apr; 359(4):280-7. PubMed ID: 10344526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The problem of antipsychotic treatment for functional imaging in Huntington's disease: receptor binding, gene expression and locomotor activity after sub-chronic administration and wash-out of haloperidol in the rat.
    Besret L; Page KJ; Dunnett SB
    Brain Res; 2000 Jan; 853(1):125-35. PubMed ID: 10627316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the pharmacological characteristics of [3H]raclopride and [3H]SCH 23390 binding to dopamine receptors in vivo in mouse brain.
    Andersen PH
    Eur J Pharmacol; 1988 Jan; 146(1):113-20. PubMed ID: 2895008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroleptics and dopamine transporters.
    Reader TA; Ase AR; Huang N; Hébert C; van Gelder NM
    Neurochem Res; 1998 Jan; 23(1):73-80. PubMed ID: 9482270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of risperidone, clozapine and haloperidol on extracellular recordings of substantia nigra reticulata neurons of the rat brain.
    Bruggeman R; Westerink BH; Timmerman W
    Eur J Pharmacol; 1997 Apr; 324(1):49-56. PubMed ID: 9137912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of long-term treatment with clozapine or haloperidol on GABAA receptor binding and GAD67 expression.
    Zink M; Schmitt A; May B; Müller B; Demirakca T; Braus DF; Henn FA
    Schizophr Res; 2004 Feb; 66(2-3):151-7. PubMed ID: 15061247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential alteration of striatal D-1 and D-2 receptors induced by the long-term administration of haloperidol, sulpiride or clozapine to rats.
    Jenner P; Rupniak NM; Marsden CD
    Psychopharmacology Suppl; 1985; 2():174-81. PubMed ID: 3159009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of [3H]YM-09151-2 with [3H]spiperone and [3H]raclopride for dopamine d-2 receptor binding to rat striatum.
    Terai M; Hidaka K; Nakamura Y
    Eur J Pharmacol; 1989 Dec; 173(2-3):177-82. PubMed ID: 2576228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous cocaine administration produces persisting changes in brain neurochemistry and behavior.
    Zeigler S; Lipton J; Toga A; Ellison G
    Brain Res; 1991 Jun; 552(1):27-35. PubMed ID: 1655167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.