These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 19774274)

  • 1. Cooperativity in noncovalent interactions of biologically relevant molecules.
    Antony J; Brüske B; Grimme S
    Phys Chem Chem Phys; 2009 Oct; 11(38):8440-7. PubMed ID: 19774274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmark RI-MP2 database of nucleic acid base trimers: performance of different density functional models for prediction of structures and binding energies.
    Kabelác M; Valdes H; Sherer EC; Cramer CJ; Hobza P
    Phys Chem Chem Phys; 2007 Sep; 9(36):5000-8. PubMed ID: 17851596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment.
    Jurecka P; Hobza P
    J Am Chem Soc; 2003 Dec; 125(50):15608-13. PubMed ID: 14664608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On geometries of stacked and H-bonded nucleic acid base pairs determined at various DFT, MP2, and CCSD(T) levels up to the CCSD(T)/complete basis set limit level.
    Dabkowska I; Jurecka P; Hobza P
    J Chem Phys; 2005 May; 122(20):204322. PubMed ID: 15945739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-empirical molecular orbital methods including dispersion corrections for the accurate prediction of the full range of intermolecular interactions in biomolecules.
    McNamara JP; Hillier IH
    Phys Chem Chem Phys; 2007 May; 9(19):2362-70. PubMed ID: 17492099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio study of hydrogen-bond formation between aliphatic and phenolic hydroxy groups and selected amino acid side chains.
    Nagy PI; Erhardt PW
    J Phys Chem A; 2008 May; 112(18):4342-54. PubMed ID: 18373368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical thermodynamics for large molecules: walking the thin line between accuracy and computational cost.
    Schwabe T; Grimme S
    Acc Chem Res; 2008 Apr; 41(4):569-79. PubMed ID: 18324790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate interaction energies of hydrogen-bonded nucleic acid base pairs.
    Sponer J; Jurecka P; Hobza P
    J Am Chem Soc; 2004 Aug; 126(32):10142-51. PubMed ID: 15303890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA base trimers: empirical and quantum chemical ab initio calculations versus experiment in vacuo.
    Kabelác M; Sherer EC; Cramer CJ; Hobza P
    Chemistry; 2007; 13(7):2067-77. PubMed ID: 17146828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures and interaction energies of stacked graphene-nucleobase complexes.
    Antony J; Grimme S
    Phys Chem Chem Phys; 2008 May; 10(19):2722-9. PubMed ID: 18464987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability.
    Schwabe T; Grimme S
    Phys Chem Chem Phys; 2007 Jul; 9(26):3397-406. PubMed ID: 17664963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approximations to complete basis set-extrapolated, highly correlated non-covalent interaction energies.
    Mackie ID; DiLabio GA
    J Chem Phys; 2011 Oct; 135(13):134318. PubMed ID: 21992316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations.
    Jurecka P; Cerný J; Hobza P; Salahub DR
    J Comput Chem; 2007 Jan; 28(2):555-69. PubMed ID: 17186489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The small planarization barriers for the amino group in the nucleic acid bases.
    Wang S; Schaefer HF
    J Chem Phys; 2006 Jan; 124(4):044303. PubMed ID: 16460158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermolecular potentials of the silane dimer calculated with Hartree-Fock theory, Møller-Plesset perturbation theory, and density functional theory.
    Pai CC; Li AH; Chao SD
    J Phys Chem A; 2007 Nov; 111(46):11922-9. PubMed ID: 17963367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic quantum chemical study of DNA-base tautomers.
    Piacenza M; Grimme S
    J Comput Chem; 2004 Jan; 25(1):83-99. PubMed ID: 14634996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isomers of the uracil dimer: an ab initio benchmark study.
    Frey JA; Müller A; Losada M; Leutwyler S
    J Phys Chem B; 2007 Apr; 111(13):3534-42. PubMed ID: 17388514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5'-d(GCGAAGC)-3' hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels.
    Dabkowska I; Gonzalez HV; Jurecka P; Hobza P
    J Phys Chem A; 2005 Feb; 109(6):1131-6. PubMed ID: 16833422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of London dispersion on the isomerization reactions of large organic molecules: a density functional benchmark study.
    Huenerbein R; Schirmer B; Moellmann J; Grimme S
    Phys Chem Chem Phys; 2010 Jul; 12(26):6940-8. PubMed ID: 20461239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.