These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 19774282)

  • 21. Understanding the oriented-attachment growth of nanocrystals from an energy point of view: a review.
    Lv W; He W; Wang X; Niu Y; Cao H; Dickerson JH; Wang Z
    Nanoscale; 2014 Mar; 6(5):2531-47. PubMed ID: 24481078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new route to self-assembled tin dioxide nanospheres: fabrication and characterization.
    Deng Z; Peng B; Chen D; Tang F; Muscat AJ
    Langmuir; 2008 Oct; 24(19):11089-95. PubMed ID: 18763816
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-crystal Bi2S3 nanosheets growing via attachment-recrystallization of nanorods.
    Zhang H; Huang J; Zhou X; Zhong X
    Inorg Chem; 2011 Aug; 50(16):7729-34. PubMed ID: 21774466
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of the oriented attachment mechanism in the phase transformation of oxide nanocrystals.
    Ribeiro C; Vila C; Milton Elias de Matos J; Bettini J; Longo E; Leite ER
    Chemistry; 2007; 13(20):5798-803. PubMed ID: 17443834
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 1. Theory.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1634-40. PubMed ID: 18198856
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of surface active molecules on the crystallization of biominerals in solution.
    Sikirić MD; Füredi-Milhofer H
    Adv Colloid Interface Sci; 2006 Dec; 128-130():135-58. PubMed ID: 17254533
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrications of hollow nanocubes of Cu(2)O and Cu via reductive self-assembly of CuO nanocrystals.
    Teo JJ; Chang Y; Zeng HC
    Langmuir; 2006 Aug; 22(17):7369-77. PubMed ID: 16893240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of reaction temperatures and media on crystal structure of colloidal nanocrystals synthesized from an aerosol flow system.
    Kim DJ; Jang HD; Kim EJ; Koo KK
    Ultramicroscopy; 2008 Sep; 108(10):1278-82. PubMed ID: 18554800
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fine-tuning the synthesis of ZnO nanostructures by an alcohol thermal process.
    Cheng JP; Zhang XB; Tao XY; Lu HM; Luo ZQ; Liu F
    J Phys Chem B; 2006 Jun; 110(21):10348-53. PubMed ID: 16722738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Size effects in the oriented-attachment growth process: the case of Cu nanoseeds.
    Shen S; Zhuang J; Xu X; Nisar A; Hu S; Wang X
    Inorg Chem; 2009 Jun; 48(12):5117-28. PubMed ID: 19413306
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Large-scale synthesis and microstructure of SnO2 nanowires coated with quantum-sized ZnO nanocrystals on a mesh substrate.
    Yu W; Li X; Gao X; Wu F
    J Phys Chem B; 2005 Sep; 109(36):17078-81. PubMed ID: 16853177
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrothermal routes to prepare nanocrystalline mesoporous SnO2 having high thermal stability.
    Fujihara S; Maeda T; Ohgi H; Hosono E; Imai H; Kim SH
    Langmuir; 2004 Jul; 20(15):6476-81. PubMed ID: 15248739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nucleation and growth of CeF(3) and NaCeF(4) nanocrystals.
    Li S; Xie T; Peng Q; Li Y
    Chemistry; 2009 Mar; 15(11):2512-7. PubMed ID: 19156811
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physicochemical aspects of novel surfactantless, self-templated mesoporous SnO2 thin films.
    Velasquez C; Rojas F; Esparza JM; Ortiz A; Campero A
    J Phys Chem B; 2006 Jun; 110(24):11832-7. PubMed ID: 16800485
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Observation of single colloidal platinum nanocrystal growth trajectories.
    Zheng H; Smith RK; Jun YW; Kisielowski C; Dahmen U; Alivisatos AP
    Science; 2009 Jun; 324(5932):1309-12. PubMed ID: 19498166
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oriented attachment growth of monocrystalline cuprous oxide nanowires in pure water.
    Meng J; Hou C; Wang H; Chi Q; Gao Y; Zhu B
    Nanoscale Adv; 2019 Jun; 1(6):2174-2179. PubMed ID: 36131967
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of lead chalcogenide nanocrystals by sequential ion implantation in silica.
    Espiau de Lamaestre R; Majimel J; Jomard F; Bernas H
    J Phys Chem B; 2005 Oct; 109(41):19148-55. PubMed ID: 16853469
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nucleation and crystal growth in supersaturated solutions of a model drug.
    Lindfors L; Forssén S; Westergren J; Olsson U
    J Colloid Interface Sci; 2008 Sep; 325(2):404-13. PubMed ID: 18561941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Labeling conditions, in vitro properties and biodistributions of various Sn-labeled complexes.
    Yang Y; Luo S; Pu M; Wang W; Wang G; He J; Liu G; Bing W; Wei H
    Appl Radiat Isot; 2005 Apr; 62(4):597-603. PubMed ID: 15701415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.