These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 19774412)

  • 1. A model of incomplete adaptation to a severely shifted frequency-to-electrode mapping by cochlear implant users.
    Sagi E; Fu QJ; Galvin JJ; Svirsky MA
    J Assoc Res Otolaryngol; 2010 Mar; 11(1):69-78. PubMed ID: 19774412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between unsupervised learning and the degree of spectral mismatch on short-term perceptual adaptation to spectrally shifted speech.
    Li T; Galvin JJ; Fu QJ
    Ear Hear; 2009 Apr; 30(2):238-49. PubMed ID: 19194293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perceptual adaptation to spectrally shifted vowels: training with nonlexical labels.
    Li T; Fu QJ
    J Assoc Res Otolaryngol; 2007 Mar; 8(1):32-41. PubMed ID: 17131213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of training rate on recognition of spectrally shifted speech.
    Nogaki G; Fu QJ; Galvin JJ
    Ear Hear; 2007 Apr; 28(2):132-40. PubMed ID: 17496666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perceptual "vowel spaces" of cochlear implant users: implications for the study of auditory adaptation to spectral shift.
    Harnsberger JD; Svirsky MA; Kaiser AR; Pisoni DB; Wright R; Meyer TA
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):2135-45. PubMed ID: 11386565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of vowel context on the recognition of initial and medial consonants by cochlear implant users.
    Donaldson GS; Kreft HA
    Ear Hear; 2006 Dec; 27(6):658-77. PubMed ID: 17086077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auditory training with spectrally shifted speech: implications for cochlear implant patient auditory rehabilitation.
    Fu QJ; Nogaki G; Galvin JJ
    J Assoc Res Otolaryngol; 2005 Jun; 6(2):180-9. PubMed ID: 15952053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fitting prelingually deafened adult cochlear implant users based on electrode discrimination performance.
    Debruyne JA; Francart T; Janssen AM; Douma K; Brokx JP
    Int J Audiol; 2017 Mar; 56(3):174-185. PubMed ID: 27758152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of electrode location and spacing on phoneme recognition with the Nucleus-22 cochlear implant.
    Fu QJ; Shannon RV
    Ear Hear; 1999 Aug; 20(4):321-31. PubMed ID: 10466568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical model of vowel identification by users of cochlear implants.
    Sagi E; Meyer TA; Kaiser AR; Teoh SW; Svirsky MA
    J Acoust Soc Am; 2010 Feb; 127(2):1069-83. PubMed ID: 20136228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of formant frequency information to vowel perception in steady-state noise by cochlear implant users.
    Sagi E; Svirsky MA
    J Acoust Soc Am; 2017 Feb; 141(2):1027. PubMed ID: 28253672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing speech envelope by integrating hair-cell adaptation into cochlear implant processing.
    Azadpour M; Smith RL
    Hear Res; 2016 Dec; 342():48-57. PubMed ID: 27697486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplitude mapping and phoneme recognition in cochlear implant listeners.
    Zeng FG; Galvin JJ
    Ear Hear; 1999 Feb; 20(1):60-74. PubMed ID: 10037066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of presentation level on phoneme and sentence recognition in quiet by cochlear implant listeners.
    Donaldson GS; Allen SL
    Ear Hear; 2003 Oct; 24(5):392-405. PubMed ID: 14534410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speech recognition under conditions of frequency-place compression and expansion.
    Baskent D; Shannon RV
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):2064-76. PubMed ID: 12703717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perception of vowels and prosody by cochlear implant recipients in noise.
    Van Zyl M; Hanekom JJ
    J Commun Disord; 2013; 46(5-6):449-64. PubMed ID: 24157128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association Between Flat-Panel Computed Tomographic Imaging-Guided Place-Pitch Mapping and Speech and Pitch Perception in Cochlear Implant Users.
    Jiam NT; Gilbert M; Cooke D; Jiradejvong P; Barrett K; Caldwell M; Limb CJ
    JAMA Otolaryngol Head Neck Surg; 2019 Feb; 145(2):109-116. PubMed ID: 30477013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing Simulated Channel Interaction Reveals Differences in Phoneme Identification Between Children and Adults With Normal Hearing.
    Jahn KN; DiNino M; Arenberg JG
    Ear Hear; 2019; 40(2):295-311. PubMed ID: 29927780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mathematical model of medial consonant identification by cochlear implant users.
    Svirsky MA; Sagi E; Meyer TA; Kaiser AR; Teoh SW
    J Acoust Soc Am; 2011 Apr; 129(4):2191-200. PubMed ID: 21476674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of electrode configuration and frequency allocation on vowel recognition with the Nucleus-22 cochlear implant.
    Fu QJ; Shannon RV
    Ear Hear; 1999 Aug; 20(4):332-44. PubMed ID: 10466569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.