These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 19774412)

  • 21. A mathematical model of medial consonant identification by cochlear implant users.
    Svirsky MA; Sagi E; Meyer TA; Kaiser AR; Teoh SW
    J Acoust Soc Am; 2011 Apr; 129(4):2191-200. PubMed ID: 21476674
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of electrode configuration and frequency allocation on vowel recognition with the Nucleus-22 cochlear implant.
    Fu QJ; Shannon RV
    Ear Hear; 1999 Aug; 20(4):332-44. PubMed ID: 10466569
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Frequency mapping in cochlear implants.
    Fu QJ; Shannon RV
    Ear Hear; 2002 Aug; 23(4):339-48. PubMed ID: 12195176
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Saliency of Vowel Features in Neural Responses of Cochlear Implant Users.
    Prévost F; Lehmann A
    Clin EEG Neurosci; 2018 Nov; 49(6):388-397. PubMed ID: 29690785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Amplitude-mapping effects on speech intelligibility with unilateral and bilateral cochlear implants.
    van Hoesel R; Böhm M; Battmer RD; Beckschebe J; Lenarz T
    Ear Hear; 2005 Aug; 26(4):381-8. PubMed ID: 16079633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The contribution of a frequency-compression hearing aid to contralateral cochlear implant performance.
    Perreau AE; Bentler RA; Tyler RS
    J Am Acad Audiol; 2013 Feb; 24(2):105-20. PubMed ID: 23357804
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptation to distorted frequency-to-place maps: implications of simulations in normal listeners for cochlear implants and electroacoustic stimulation.
    Faulkner A
    Audiol Neurootol; 2006; 11 Suppl 1():21-6. PubMed ID: 17063007
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Speech Perception With Combined Electric-Acoustic Stimulation: A Simulation and Model Comparison.
    Rader T; Adel Y; Fastl H; Baumann U
    Ear Hear; 2015; 36(6):e314-25. PubMed ID: 25989069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recognition of spectrally degraded and frequency-shifted vowels in acoustic and electric hearing.
    Fu QJ; Shannon RV
    J Acoust Soc Am; 1999 Mar; 105(3):1889-900. PubMed ID: 10089611
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phoneme recognition and confusions with multichannel cochlear implants: vowels.
    Välimaa TT; Määttä TK; Löppönen HJ; Sorri MJ
    J Speech Lang Hear Res; 2002 Oct; 45(5):1039-54. PubMed ID: 12381059
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-term auditory adaptation to a modified peripheral frequency map.
    Svirsky MA; Silveira A; Neuburger H; Teoh SW; Suárez H
    Acta Otolaryngol; 2004 May; 124(4):381-6. PubMed ID: 15224858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relationships Among Peripheral and Central Electrophysiological Measures of Spatial and Spectral Selectivity and Speech Perception in Cochlear Implant Users.
    Scheperle RA; Abbas PJ
    Ear Hear; 2015; 36(4):441-53. PubMed ID: 25658746
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Frequency-to-Place Mismatch: Characterizing Variability and the Influence on Speech Perception Outcomes in Cochlear Implant Recipients.
    Canfarotta MW; Dillon MT; Buss E; Pillsbury HC; Brown KD; O'Connell BP
    Ear Hear; 2020; 41(5):1349-1361. PubMed ID: 32205726
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of dynamic range and amplitude mapping on phoneme recognition in Nucleus-22 cochlear implant users.
    Fu QJ; Shannon RV
    Ear Hear; 2000 Jun; 21(3):227-35. PubMed ID: 10890731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
    Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C
    Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Perceptual learning following changes in the frequency-to-electrode assignment with the Nucleus-22 cochlear implant.
    Fu QJ; Shannon RV; Galvin JJ
    J Acoust Soc Am; 2002 Oct; 112(4):1664-74. PubMed ID: 12398471
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of vowel length, word stress, and compound words and phrases by postlingually deafened cochlear implant listeners.
    Morris D; Magnusson L; Faulkner A; Jönsson R; Juul H
    J Am Acad Audiol; 2013 Oct; 24(9):879-90. PubMed ID: 24224994
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cortical Auditory Evoked Potentials Recorded From Nucleus Hybrid Cochlear Implant Users.
    Brown CJ; Jeon EK; Chiou LK; Kirby B; Karsten SA; Turner CW; Abbas PJ
    Ear Hear; 2015; 36(6):723-32. PubMed ID: 26295607
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimizing frequency-to-electrode allocation for individual cochlear implant users.
    Grasmeder ML; Verschuur CA; Batty VB
    J Acoust Soc Am; 2014 Dec; 136(6):3313. PubMed ID: 25480076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatial benefit of bilateral hearing AIDS.
    Ahlstrom JB; Horwitz AR; Dubno JR
    Ear Hear; 2009 Apr; 30(2):203-18. PubMed ID: 19194292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.