These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 19774481)
1. Effect of melatonin on age induced changes in daily serotonin rhythms in suprachiasmatic nucleus of male Wistar rat. Jagota A; Kalyani D Biogerontology; 2010 Jun; 11(3):299-308. PubMed ID: 19774481 [TBL] [Abstract][Full Text] [Related]
2. Daily serotonin rhythms in rat brain during postnatal development and aging. Jagota A; Kalyani D Biogerontology; 2008 Aug; 9(4):229-34. PubMed ID: 18317947 [TBL] [Abstract][Full Text] [Related]
3. Differential role of melatonin in restoration of age-induced alterations in daily rhythms of expression of various clock genes in suprachiasmatic nucleus of male Wistar rats. Mattam U; Jagota A Biogerontology; 2014 Jun; 15(3):257-68. PubMed ID: 24619734 [TBL] [Abstract][Full Text] [Related]
4. Daily rhythms of serotonin metabolism and the expression of clock genes in suprachiasmatic nucleus of rotenone-induced Parkinson's disease male Wistar rat model and effect of melatonin administration. Mattam U; Jagota A Biogerontology; 2015 Feb; 16(1):109-23. PubMed ID: 25430725 [TBL] [Abstract][Full Text] [Related]
5. Melatonin has differential effects on age-induced stoichiometric changes in daily chronomics of serotonin metabolism in SCN of male Wistar rats. Reddy MY; Jagota A Biogerontology; 2015 Jun; 16(3):285-302. PubMed ID: 25510956 [TBL] [Abstract][Full Text] [Related]
6. Melatonin administration differentially affects age-induced alterations in daily rhythms of lipid peroxidation and antioxidant enzymes in male rat liver. Manikonda PK; Jagota A Biogerontology; 2012 Oct; 13(5):511-24. PubMed ID: 22960749 [TBL] [Abstract][Full Text] [Related]
7. Daily chronomics of proteomic profile in aging and rotenone-induced Parkinson's disease model in male Wistar rat and its modulation by melatonin. Jagota A; Mattam U Biogerontology; 2017 Aug; 18(4):615-630. PubMed ID: 28577110 [TBL] [Abstract][Full Text] [Related]
8. Arginine-vasopressin and vasointestinal polypeptide rhythms in the suprachiasmatic nucleus of the mouse lemur reveal aging-related alterations of circadian pacemaker neurons in a non-human primate. Cayetanot F; Bentivoglio M; Aujard F Eur J Neurosci; 2005 Aug; 22(4):902-10. PubMed ID: 16115213 [TBL] [Abstract][Full Text] [Related]
9. Daily NO rhythms in peripheral clocks in aging male Wistar rats: protective effects of exogenous melatonin. Vinod C; Jagota A Biogerontology; 2016 Nov; 17(5-6):859-871. PubMed ID: 27614960 [TBL] [Abstract][Full Text] [Related]
10. Endogenous melatonin provides an effective circadian message to both the suprachiasmatic nuclei and the pars tuberalis of the rat. Agez L; Laurent V; Guerrero HY; Pévet P; Masson-Pévet M; Gauer F J Pineal Res; 2009 Jan; 46(1):95-105. PubMed ID: 19090912 [TBL] [Abstract][Full Text] [Related]
11. Loss of responsiveness to melatonin in the aging mouse suprachiasmatic nucleus. von Gall C; Weaver DR Neurobiol Aging; 2008 Mar; 29(3):464-70. PubMed ID: 17123666 [TBL] [Abstract][Full Text] [Related]
12. The effect of curcumin on ethanol induced changes in suprachiasmatic nucleus (SCN) and pineal. Jagota A; Reddy MY Cell Mol Neurobiol; 2007 Dec; 27(8):997-1006. PubMed ID: 17846884 [TBL] [Abstract][Full Text] [Related]
13. Age related changes in the activity-rest circadian rhythms and c-fos expression of ring doves with aging. Effects of tryptophan intake. Garau C; Aparicio S; Rial RV; Nicolau MC; Esteban S Exp Gerontol; 2006 Apr; 41(4):430-8. PubMed ID: 16564149 [TBL] [Abstract][Full Text] [Related]
14. Day time-restricted feeding shows differential synchronizing effects on age-related changes of serotonin metabolism in SCN and the pineal gland in male Wistar rats. Reddy VDK; Dalai M; Khan MS; Jagota A Biogerontology; 2022 Dec; 23(6):771-788. PubMed ID: 36322233 [TBL] [Abstract][Full Text] [Related]
15. Characterization of melatonin-induced fos-like immunoreactivity in the hypothalamic suprachiasmatic nucleus of the rat. Mullins UL; Gianutsos G; Eison AS J Recept Signal Transduct Res; 1999 Sep; 19(5):781-801. PubMed ID: 10349594 [TBL] [Abstract][Full Text] [Related]
16. The endogenous melatonin (MT) signal facilitates reentrainment of the circadian system to light-induced phase advances by acting upon MT2 receptors. Pfeffer M; Rauch A; Korf HW; von Gall C Chronobiol Int; 2012 May; 29(4):415-29. PubMed ID: 22489607 [TBL] [Abstract][Full Text] [Related]
17. Melatonin, the pineal gland, and circadian rhythms. Cassone VM; Warren WS; Brooks DS; Lu J J Biol Rhythms; 1993; 8 Suppl():S73-81. PubMed ID: 8274765 [TBL] [Abstract][Full Text] [Related]
18. Gut clock: implication of circadian rhythms in the gastrointestinal tract. Konturek PC; Brzozowski T; Konturek SJ J Physiol Pharmacol; 2011 Apr; 62(2):139-50. PubMed ID: 21673361 [TBL] [Abstract][Full Text] [Related]
19. Calbindin D28K protein cells in a primate suprachiasmatic nucleus: localization, daily rhythm and age-related changes. Cayetanot F; Deprez J; Aujard F Eur J Neurosci; 2007 Oct; 26(7):2025-32. PubMed ID: 17897402 [TBL] [Abstract][Full Text] [Related]
20. The expression of the melatonin synthesis enzyme: arylalkylamine N-acetyltransferase in the suprachiasmatic nucleus of rat brain. Hamada T; Ootomi M; Horikawa K; Niki T; Wakamatu H; Ishida N Biochem Biophys Res Commun; 1999 May; 258(3):772-7. PubMed ID: 10329462 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]