These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 19774481)

  • 21. Circadian rhythmicity in AVP secretion and GABAergic synaptic transmission in the rat suprachiasmatic nucleus.
    Kretschmannova K; Svobodova I; Balik A; Mazna P; Zemkova H
    Ann N Y Acad Sci; 2005 Jun; 1048():103-15. PubMed ID: 16154925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A functional subdivision of the circadian clock is revealed by differential effects of melatonin administration.
    Tritschler L; Saboureau M; Pévet P; Bothorel B
    Neurosci Lett; 2006 Mar; 396(1):73-6. PubMed ID: 16368190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Daily Socs1 rhythms alter with aging differentially in peripheral clocks in male Wistar rats: therapeutic effects of melatonin.
    Vinod C; Jagota A
    Biogerontology; 2017 Jun; 18(3):333-345. PubMed ID: 28331994
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Age-related effects on the biological clock and its behavioral output in a primate.
    Aujard F; Cayetanot F; Bentivoglio M; Perret M
    Chronobiol Int; 2006; 23(1-2):451-60. PubMed ID: 16687318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activation of 5-HT2C receptors acutely induces Per1 gene expression in the rat SCN in vitro.
    Varcoe TJ; Kennaway DJ
    Brain Res; 2008 May; 1209():19-28. PubMed ID: 18400210
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Restricted feeding restores rhythmicity in the pineal gland of arrhythmic suprachiasmatic-lesioned rats.
    Feillet CA; Mendoza J; Pévet P; Challet E
    Eur J Neurosci; 2008 Dec; 28(12):2451-8. PubMed ID: 19087173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diurnal and circadian changes of serotonin in the suprachiasmatic nuclei: regulation by light and an endogenous pacemaker.
    Cagampang FR; Inouye ST
    Brain Res; 1994 Mar; 639(1):175-9. PubMed ID: 8180833
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Melatonin: both master clock output and internal time-giver in the circadian clocks network.
    Pevet P; Challet E
    J Physiol Paris; 2011 Dec; 105(4-6):170-82. PubMed ID: 21914478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Signal transmission from the suprachiasmatic nucleus to the pineal gland via the paraventricular nucleus: analysed from arg-vasopressin peptide, rPer2 mRNA and AVP mRNA changes and pineal AA-NAT mRNA after the melatonin injection during light and dark periods.
    Isobe Y; Nishino H
    Brain Res; 2004 Jul; 1013(2):204-11. PubMed ID: 15193530
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of photic stimuli disturbing overt circadian rhythms on the dorsomedial and ventrolateral SCN rhythmicity.
    Sumová A; Illnerová H
    Brain Res; 2005 Jun; 1048(1-2):161-9. PubMed ID: 15913573
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Restricted feeding regime affects clock gene expression profiles in the suprachiasmatic nucleus of rats exposed to constant light.
    Nováková M; Polidarová L; Sládek M; Sumová A
    Neuroscience; 2011 Dec; 197():65-71. PubMed ID: 21952132
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Environmental light and suprachiasmatic nucleus interact in the regulation of body temperature.
    Scheer FA; Pirovano C; Van Someren EJ; Buijs RM
    Neuroscience; 2005; 132(2):465-77. PubMed ID: 15802197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Maternal control of the fetal and neonatal rat suprachiasmatic nucleus.
    El-Hennamy R; Mateju K; Bendová Z; Sosniyenko S; Sumová A
    J Biol Rhythms; 2008 Oct; 23(5):435-44. PubMed ID: 18838609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Short-term constant light potentiation of large-magnitude circadian phase shifts induced by 8-OH-DPAT: effects on serotonin receptors and gene expression in the hamster suprachiasmatic nucleus.
    Duncan MJ; Franklin KM; Davis VA; Grossman GH; Knoch ME; Glass JD
    Eur J Neurosci; 2005 Nov; 22(9):2306-14. PubMed ID: 16262668
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The human pineal gland and melatonin in aging and Alzheimer's disease.
    Wu YH; Swaab DF
    J Pineal Res; 2005 Apr; 38(3):145-52. PubMed ID: 15725334
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Living by the clock: the circadian pacemaker in older people.
    Hofman MA; Swaab DF
    Ageing Res Rev; 2006 Feb; 5(1):33-51. PubMed ID: 16126012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Age-related changes in 24-hour rhythms of norepinephrine content and serotonin turnover in rat pineal gland: effect of melatonin treatment.
    Pazo D; Cardinali DP; Cano P; Reyes Toso CA; Esquifino AI
    Neurosignals; 2002; 11(2):81-7. PubMed ID: 12077481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Melatonin instantaneously resets intrinsic circadian rhythmicity in the rat suprachiasmatic nucleus.
    Sumová A; Illnerová H
    Neurosci Lett; 1996 Nov; 218(3):181-4. PubMed ID: 8945758
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Therapeutic effects of curcumin on age-induced alterations in daily rhythms of clock genes and Sirt1 expression in the SCN of male Wistar rats.
    Kukkemane K; Jagota A
    Biogerontology; 2019 Aug; 20(4):405-419. PubMed ID: 30607623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Entrainment of rat circadian rhythms by daily injection of melatonin depends upon the hypothalamic suprachiasmatic nuclei.
    Cassone VM; Chesworth MJ; Armstrong SM
    Physiol Behav; 1986; 36(6):1111-21. PubMed ID: 3014578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.