These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
389 related articles for article (PubMed ID: 19774546)
1. Ifosfamide metabolite chloroacetaldehyde inhibits cell proliferation and glucose metabolism without decreasing cellular ATP content in human breast cancer cells MCF-7. Knouzy B; Dubourg L; Baverel G; Michoudet C J Appl Toxicol; 2010 Apr; 30(3):204-11. PubMed ID: 19774546 [TBL] [Abstract][Full Text] [Related]
2. Ifosfamide cytotoxicity on human tumor and renal cells: role of chloroacetaldehyde in comparison to 4-hydroxyifosfamide. Brüggemann SK; Kisro J; Wagner T Cancer Res; 1997 Jul; 57(13):2676-80. PubMed ID: 9205076 [TBL] [Abstract][Full Text] [Related]
3. Chloroacetaldehyde: mode of antitumor action of the ifosfamide metabolite. Brüggemann SK; Radike K; Braasch K; Hinrichs J; Kisro J; Hagenah W; Peters SO; Wagner T Cancer Chemother Pharmacol; 2006 Feb; 57(3):349-56. PubMed ID: 16133533 [TBL] [Abstract][Full Text] [Related]
4. Metabolism of ifosfamide to chloroacetaldehyde contributes to antitumor activity in vivo. Börner K; Kisro J; Brüggemann SK; Hagenah W; Peters SO; Wagner T Drug Metab Dispos; 2000 May; 28(5):573-6. PubMed ID: 10772637 [TBL] [Abstract][Full Text] [Related]
5. Glucose-dependent active ATP depletion by koningic acid kills high-glycolytic cells. Kumagai S; Narasaki R; Hasumi K Biochem Biophys Res Commun; 2008 Jan; 365(2):362-8. PubMed ID: 17997978 [TBL] [Abstract][Full Text] [Related]
6. Chloroacetaldehyde as a sulfhydryl reagent: the role of critical thiol groups in ifosfamide nephropathy. Benesic A; Schwerdt G; Freudinger R; Mildenberger S; Groezinger F; Wollny B; Kirchhoff A; Gekle M Kidney Blood Press Res; 2006; 29(5):280-93. PubMed ID: 17035713 [TBL] [Abstract][Full Text] [Related]
7. Targets of chloroacetaldehyde-induced nephrotoxicity. Knouzy B; Dubourg L; Baverel G; Michoudet C Toxicol In Vitro; 2010 Feb; 24(1):99-107. PubMed ID: 19733226 [TBL] [Abstract][Full Text] [Related]
8. Necrotic pathway in human osteosarcoma Saos-2 cell death induced by chloroacetaldehyde. Takahashi K; Sakurai K; Takahashi K; Tanaka H; Fujimoto Y Anticancer Drugs; 2007 Jun; 18(5):543-53. PubMed ID: 17414623 [TBL] [Abstract][Full Text] [Related]
9. Mechanisms of the ifosfamide-induced inhibition of endocytosis in the rat proximal kidney tubule. Yaseen Z; Michoudet C; Baverel G; Dubourg L Arch Toxicol; 2008 Sep; 82(9):607-14. PubMed ID: 18214444 [TBL] [Abstract][Full Text] [Related]
10. Combination of imatinib and clotrimazole enhances cell growth inhibition in T47D breast cancer cells. Motawi TM; Sadik NA; Fahim SA; Shouman SA Chem Biol Interact; 2015 May; 233():147-56. PubMed ID: 25863232 [TBL] [Abstract][Full Text] [Related]
11. Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: Role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB. Menendez JA; Mehmi I; Atlas E; Colomer R; Lupu R Int J Oncol; 2004 Mar; 24(3):591-608. PubMed ID: 14767544 [TBL] [Abstract][Full Text] [Related]
12. Control of cellular proliferation by modulation of oxidative phosphorylation in human and rodent fast-growing tumor cells. Rodríguez-Enríquez S; Vital-González PA; Flores-Rodríguez FL; Marín-Hernández A; Ruiz-Azuara L; Moreno-Sánchez R Toxicol Appl Pharmacol; 2006 Sep; 215(2):208-17. PubMed ID: 16580038 [TBL] [Abstract][Full Text] [Related]
13. Mitochondria, hexokinase and pyruvate kinase isozymes in the aerobic glycolysis of tumor cells. Petrucci D; Cesare P; Colafarina S Ital J Biochem; 1997 Sep; 46(3):131-41. PubMed ID: 9442422 [TBL] [Abstract][Full Text] [Related]
14. Effect of the antitumor drug lonidamine on glucose metabolism of adriamycin-sensitive and -resistant human breast cancer cells. Fanciulli M; Valentini A; Bruno T; Citro G; Zupi G; Floridi A Oncol Res; 1996; 8(3):111-20. PubMed ID: 8823807 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate. Pereira da Silva AP; El-Bacha T; Kyaw N; dos Santos RS; da-Silva WS; Almeida FC; Da Poian AT; Galina A Biochem J; 2009 Feb; 417(3):717-26. PubMed ID: 18945211 [TBL] [Abstract][Full Text] [Related]
16. Casiopeina II-gly and bromo-pyruvate inhibition of tumor hexokinase, glycolysis, and oxidative phosphorylation. Marín-Hernández A; Gallardo-Pérez JC; López-Ramírez SY; García-García JD; Rodríguez-Zavala JS; Ruiz-Ramírez L; Gracia-Mora I; Zentella-Dehesa A; Sosa-Garrocho M; Macías-Silva M; Moreno-Sánchez R; Rodríguez-Enríquez S Arch Toxicol; 2012 May; 86(5):753-66. PubMed ID: 22349057 [TBL] [Abstract][Full Text] [Related]
17. Glycolytic, glutaminolytic and pentose-phosphate pathways in promyelocytic HL60 and DMSO-differentiated HL60 cells. Ahmed N; Williams JF; Weidemann MJ Biochem Mol Biol Int; 1993 Apr; 29(6):1055-67. PubMed ID: 8330014 [TBL] [Abstract][Full Text] [Related]
18. Efficacy of 2-halogen substituted D-glucose analogs in blocking glycolysis and killing "hypoxic tumor cells". Lampidis TJ; Kurtoglu M; Maher JC; Liu H; Krishan A; Sheft V; Szymanski S; Fokt I; Rudnicki WR; Ginalski K; Lesyng B; Priebe W Cancer Chemother Pharmacol; 2006 Dec; 58(6):725-34. PubMed ID: 16555088 [TBL] [Abstract][Full Text] [Related]
19. Ifosfamide metabolites CAA, 4-OH-Ifo and Ifo-mustard reduce apical phosphate transport by changing NaPi-IIa in OK cells. Patzer L; Hernando N; Ziegler U; Beck-Schimmer B; Biber J; Murer H Kidney Int; 2006 Nov; 70(10):1725-34. PubMed ID: 17003823 [TBL] [Abstract][Full Text] [Related]
20. Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. Marín-Hernández A; Rodríguez-Enríquez S; Vital-González PA; Flores-Rodríguez FL; Macías-Silva M; Sosa-Garrocho M; Moreno-Sánchez R FEBS J; 2006 May; 273(9):1975-88. PubMed ID: 16640561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]